
Atmel 8051 Microcontrollers
Hardware Manual

Atmel 8051 Microcontrollers Hardware Manual 1

4316E–8051–01/07

Table of Contents

Section 1

The 8051 Instruction Set... 1-2

1.1 Program Status Word..1-2

1.2 Addressing Modes ..1-3

1.3 Arithmetic Instructions...1-5

1.4 Logical Instructions ...1-6

1.5 Data Transfers ...1-7

1.6 External RAM...1-10

1.7 Lookup Tables ...1-10

1.8 Boolean Instructions ...1-11

1.9 Jump Instructions..1-13

1.10 Read-Modify-Write Instruction Features ...1-15

1.11 Instruction Set Summary...1-16

1.12 Instructions That Affect Flag Settings ...1-20

1.13 Instruction Table ...1-21

1.14 Instruction Definitions..1-24

Section 2

Common Features Description ... 2-66

2.1 Introduction ..2-66

2.2 Special Function Registers ...2-68

2.3 Oscillator and Clock Circuit ...2-70

2.4 CPU Timing...2-71

2.5 Port Structures and Operation ..2-73

2.6 Accessing External Memory..2-77

2.7 PSEN ..2-78

2.8 ALE ...2-79

2.9 Timer/Counters ...2-81

2.10 Timer 0..2-82

2.11 Timer 1..2-84

2.12 Timer 2..2-89

2.13 Serial Interface..2-94

2.14 Framing Error Detection..2-104

2.15 Automatic Address Recognition ..2-105

2.16 Interrupts ...2-112

Section 1

The 8051 Instruction Set

The 8051 instruction set is optimized for 8-bit control applications. It provides a variety of

fast addressing modes for accessing the internal RAM to facilitate byte operations on

small data structures. The instruction set provides extensive support for one-bit vari-

ables as a separate data type, allowing direct bit manipulation in control and logic

systems that require Boolean processing.

An overview of the 8051 instruction set is presented below, with a brief description of

how certain instructions might be used.

1.1 Program Status
Word

The Program Status Word (PSW) contains several status bits that reflect the current

state of the CPU. The PSW, shown in Table 1-1 on page 3, resides in SFR space. It

contains the Carry bit, the Auxiliary Carry (for BCD operations), the two register bank

select bits, the Overflow flag, a parity bit, and two user-definable status flags.

The Carry bit, other than serving the functions of a Carry bit in arithmetic operations,

also serves as the “Accumulator” for a number of Boolean operations.

The bits RS0 and RS1 are used to select one of the four register banks shown below.

A number of instructions refer to these RAM locations as R0 through R7. The selection

of which of the four banks is being referred to is made on the basis of the bits RS0 and

RS1 at execution time.

The parity bit reflects the number of 1’s in the Accumulator: P = 1 if the Accumulator

contains an odd number of 1’s, and P = 0 if the Accumulator contains an even number of

1’s. Thus the number of 1’s in the Accumulator plus P is always even.

Two bits in the PSW are uncommitted and may be used as general purpose status flags.

The PSW register contains program status information as detailed in Table 1-1.
Atmel 8051 Microcontrollers Hardware Manual 1-1

Rev. 4316E–8051–01/07

The 8051 Instruction Set
Table 1-1. PSW: Program Status Word Register

1.2 Addressing
Modes

The addressing modes in the 8051 instruction set are as follows:

1.2.1 Direct Addressing In direct addressing the operand is specified by an 8-bit address field in the instruction.

Only 128 Lowest bytes of internal Data RAM and SFRs can be directly addressed.

1.2.2 Indirect Addressing In indirect addressing the instruction specifies a register which contains the address of

the operand. Both internal and external RAM can be indirectly addressed.

The address register for 8-bit addresses can be R0 or R1 of the selected register bank,

or the Stack Pointer. The address register for 16-bit addresses can only be the 16-bit

“data pointer” register, DPTR.

(MSB) (LSB)

CY AC F0 RS1 RS0 OV - P

Symbol Position Name and Significance

CY PSW.7 Carry flag

AC PSW.6
Auxiliary Carry flag.

(For BCD operations.)

F0 PSW.5
Flag 0

(Available to the user for general purposes.)

RS1 PSW.4

Register bank Select control bits 1 & 0. Set/cleared

by software to determine working register bank (see

Note).

RS0 PSW.3

OV PSW.2 Overflow flag.

- PSW.1 (reserved)

P PSW.0

Parity flag.

Set/cleared by hardware each instruction cycle to

indicate and odd/even number of “one” bits in the

accumulator, i.e., even parity.

Note:

The contents of (RS1, RS0) enable the working register banks as follows:

(0.0)-Bank 0(00H-07H)

(0.1)-Bank 1(08H-0FH)

(1.0)-Bank 2(10H-17H)

(1.1)-Bank 3(18H-1FH)
Atmel 8051 Microcontrollers Hardware Manual 1-2

4316E–8051–01/07

The 8051 Instruction Set
1.2.3 Register
Instructions

The register banks, containing registers R0 through R7, can be accessed by certain

instructions which carry a 3-bit register specification within the opcode of the instruction.

Instructions that access the registers this way are code efficient, since this mode elimi-

nates an address byte. When the instruction is executed, one of the eight registers in the

selected bank is accessed. One of four banks is selected at execution time by the two

bank select bits in the PSW.

1.2.4 Register-specific
Instructions

Some instructions are specific to a certain register. For example, some instructions

always operate on the Accumulator, or Data Pointer, etc., so no address byte is needed

to point to it. The opcode does this itself. Instructions that refer to the Accumulator as ‘A’

assemble as accumulator-specific opcodes.

1.2.5 Immediate
Constants

The value of a constant can follow the opcode in Program Memory. For example;
MOV A, # 100

loads the Accumulator with the decimal number 100. The same number could be speci-

fied in hex digits as 64H.

1.2.6 Indexed Addressing Only Program Memory can be accessed with indexed addressing, and it can only be

read. This addressing mode is intended for reading look-up tables in Program Memory.

A 16-bit base register (either DPTR or the Program Counter) points to the base of the

table, and the Accumulator is set up with the table entry number. The address of the

table entry in Program Memory is formed by adding the Accumulator data to the base

pointer.

Another type of indexed addressing is used in the “case jump” instruction. In this case

the destination address of a jump instruction is computed as the sum of the base pointer

and the Accumulator data.
1-3 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

The 8051 Instruction Set
1.3 Arithmetic
Instructions

The menu of arithmetic instructions is listed in Table 1-2. The table indicates the

addressing modes that can be used with each instruction to access the <byte> operand.

For example, the ADD A, <byte> instruction can be written as:

ADD A,7FH (direct addressing)

ADD A,@ R0(indirect addressing)

ADD A,R7 (register addressing)

ADD A,# 127(immediate constant)

The execution times listed in Table 1-2 assume a 12 MHz clock frequency and X1

mode. All of the arithmetic instructions execute in 1 ms except the INC DPTR instruction,

which takes 2 ms, and the Multiply and Divide instructions, which take 4 ms.

Note that any byte in the internal Data Memory space can be incremented or decre-

mented without going through the Accumulator.

One of the INC instructions operates on the 16-bit Data Pointer. The Data Pointer is

used to generate 16-bit addresses for external memory, so being able to increment it in

one 16-bit operation is a useful feature.

The MUL AB instruction multiplies the Accumulator by the data in the B register and puts

the 16-bit product into the concatenated B and Accumulator registers.

The DIV AB instruction divides the Accumulator by the data in the B register and leaves

the 8-bit quotient in the Accumulator, and the 8-bit remainder in the B register.

Oddly enough, DIV AB finds less use in arithmetic “divide” routines than in radix conver-

sions and programmable shift operations. An example of the use of DIV AB in a radix

conversion will be given later. In shift operations, dividing a number by 2n shifts its n bits

to the right. Using DIV AB to perform the division completes the shift in 4 ms leaves the B

register holding the bits that were shifted out.

Table 1-2. A list of the Atmel 8051 Arithmetic Instructions.

Mnemonic Operation Addressing Modes

Execution Time in X1

Mode

@12 MHz (µs)

Dir Ind Reg

Im

m

ADD A, <byt>e A = A + <byte> X X X X

ADDC A,

<byte>
A = A + <byte> + C X X X X 1

SUBB A,

<byte>
A = A – <byte> – C X X X X 1

INC A A = A + 1 Accumulator only 1

INC <byte> <byte> = <byte> + 1 X X X 1

INC DPTR DPTR = DPTR + 1 Data Pointer only 2

DEC A A = A – 1 Accumulator only 1

DEC <byte> <byte> = <byte> – 1 X X X 1

MUL AB B:A = B · A ACC and B only 4

DIV AB
A = Int [A/B]

B = Mod [A/B]
ACC and B only 4

DA A Decimal Adjust Accumulator only 1
Atmel 8051 Microcontrollers Hardware Manual 1-4

4316E–8051–01/07

The 8051 Instruction Set
The DA A instruction is for BCD arithmetic operations. In BCD arithmetic ADD and

ADDC instructions should always be followed by a DA A operation, to ensure that the

result is also in BCD. Note that DAA will not convert a binary number to BCD. The DA A

operation produces a meaningful result only as the second step in the addition of two

BCD bytes.

1.4 Logical
Instructions

Table 1-3 shows the list of logical instructions. The instructions that perform Boolean

operations (AND, OR, Exclusive OR, NOT) on bytes perform the operation on a bit-by-

bit basis. That is, if the Accumulator contains 00110101B and <byte> contains

01010011B, then
ANL A,<byte>

will leave the Accumulator holding 00010001B.

The addressing modes that can be used to access the <byte> operand are listed in

Table 1-3. Thus, the ANL A, <byte> instruction may take any of the following forms.

ANL A, 7FH(direct addressing)

ANL A, @ R1(indirect addressing)

ANL A, R6(register addressing)

ANL A, # 53H(immediate constant)

All of the logical instructions that are Accumulator specific execute in 1 ms (using a

12 MHz clock and X1 mode). The others take 2 ms.

Table 1-3. A list of the Atmel 8051 Logical Instructions

Mnemonic Operation Addressing Modes

Execution Time

@ 12MHz (µs)

Dir Ind Reg Imm

ANL A, <byte> A = A AND <byte> X X X X 1

ANL <byte>, A <byte> = <byte> AND A X 1

ANL <byte>, #

data
<byte> = <byte> AND # data X 2

ORL A, <byte> A = A OR <byte> X X X X 1

ORL <byte>, A <byte> = <byte> OR A X 1

ORL <byte>, #

data
<byte> = <byte> OR # data X 2

XRL A, <byte> A = A XOR <byte> X X X X 1

XRL <byte>, A <byte> = <byte> XOR A X 1

XRL <byte>, #

data
<byte> = <byte> XOR # data X 2

CLR A A = 00H Accumulator only 1

CLP A A = NOT A Accumulator only 1

RL A Rotate ACC Left 1 bit Accumulator only 1

RLC A Rotate Left through Carry Accumulator only 1

RR A Rotate ACC Right 1 bit Accumulator only 1

RRC A Rotate Right through Carry Accumulator only 1

SWAP A Swap Nibbles in A Accumulator only 1
1-5 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

The 8051 Instruction Set
Note that Boolean operations can be performed on any byte in the internal Data Memory

space without going through the Accumulator. The XRL <byte>, # data instruction, for

example, offers a quick and easy way to invert port bits, as in
XRL P1, #OFFH

If the operation is in response to an interrupt, not using the Accumulator saves the time

and effort to stack it in the service routine.

The Rotate instructions (RL A, RLC A, etc.) shift the Accumulator 1 bit to the left or right.

For a left rotation, the MSB rolls into the LSB position. For a right rotation, the LSB rolls

into the MSB position.

The SWAP A instruction interchanges the high and low nibbles within the Accumulator.

this is a useful operation in BCD manipulations. For example, if the Accumulator con-

tains a binary number which is known to be less than 100, it can be quickly converted to

BCD by the following code:

MOV B, #10

DIV AB

SWAP A

ADD A,B

Dividing the number by 10 leaves the tens digit in the low nibble of the Accumulator, and

the ones digit in the B register. The SWAP and ADD instructions move the tens digit to

the high nibble of the Accumulator, and the ones digit to the low nibble.

1.5 Data Transfers

1.5.1 Internal RAM Table 1-4 shows the menu of instructions that are available for moving data around

within the internal memory spaces, and the addressing modes that can be used with

each one. With a 12 MHz clock and X1 mode, all of these instructions execute in either

1 or 2 ms.

The MOV <dest>, <src> instruction allows data to be transferred between any two inter-

nal RAM or SFR locations without going through the Accumulator. Remember the Upper

128 bytes of data RAM can be accessed only by indirect, and SFR space only by direct

addressing.

Note that in all 8051 devices, the stack resides in on-chip RAM, and grows upwards.

The PUSH instruction first increments the Stack Pointer (SP), then copies the byte into

the stack. PUSH and POP use only direct addressing to identify the byte being saved or

restored, but the stack itself is accessed by indirect addressing using the SP register.
Atmel 8051 Microcontrollers Hardware Manual 1-6

4316E–8051–01/07

The 8051 Instruction Set
This means the stack can go into the Upper 128, if they are implemented, but not into

SFR space.

The Upper 128 are not implemented in the 8 standard 8051, nor in their ROMless. With

these devices, if the SP points to the Upper 128 PUSHed bytes are lost, and POPped

bytes are indeterminate.

The Data Transfer instructions include a 16-bit MOV that can be used to initialize the

Data Pointer (DPTR) for look-up tables in Program Memory, or for 16-bit external Data

Memory accesses.

The XCH A, <byte> instruction causes the Accumulator and addressed byte to

exchange data.

The XCHD A, @ Ri instruction is similar, but only the low nibbles are involved in the

exchange.

The see how XCH and XCHD can be used to facilitate data manipulations, consider first

the problem of shifting an 8-digit BCD number two digits to the right. Table 1-5 shows

how this can be done using direct MOVs, and for comparison how it can be done using

XCH instructions. To aid in understanding how the code works, the contents of the reg-

isters that are holding the BCD number and the content of the Accumulator are shown

alongside each instruction to indicate their status after the instruction has been

executed.

After the routine has been executed, the Accumulator contains the two digits that were

shifted out on the right. Performing the routine with direct MOVs uses 14 code bytes and

9 ms of execution time (assuming a 12 MHz clock and X1 mode). The same operation

with XCHs uses less code and executes almost twice as fast.

Table 1-4. Atmel 8051 Data Transfer Instructions that Access Internal Data Memory
Space

Mnemonic Operation Addressing Modes

Execution Time

@ 12MHz (µs)

Dir Ind Reg Imm

MOV A, <src> A = <src> X X X X 1

MOV <dest>, A <dest> = A X X X 1

MOV <dest>,

<src>
 <dest> = <src> X X X X 2

MOV DPTR, #

data 16

DPTR = 16-bit immediate

constant
X 2

PUSH <src> INC SP: MOV “@SP”, <scr> X 2

POP <dest> MOV <dest>, “@SP”: DEC SP X 2

XCH A, <byte> ACC and <byte> Exchange Data X X X 1

XCHD A, @Ri
ACC and @ Ri exchange low

nibbles
X 1
1-7 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

The 8051 Instruction Set
To right-shift by an odd number of digits, a one-digit shift must be executed. Table 1-6

shows a sample of code that will right-shift a BCD number one digit, using the XCHD

instruction. Again, the contents of the registers holding the number and of the Accumu-

lator are shown alongside each instruction.

First, pointers R1 and R0 are set up to point to the two bytes containing the last four

BCD digits. Then a loop is executed which leaves the last byte, location 2EH, holding

the last two digits of the shifted number. The pointers are decremented, and the loop is

Table 1-5. Shifting a BCD Number Two Digits to the Right

2A 2B 2C 2D 2E ACC

MOV A,2EH

MOV 2EH, 2DH

MOV 2DH, 2CH

MOV 2CH, 2BH

MOV 2BH, # 0

00

00

00

00

00

12

12

12

12

00

34

34

34

12

12

56

56

34

34

34

78

56

56

56

56

78

78

78

78

78

Note: Using direct MOVs: 14 bytes, 9 ms

2A 2B 2C 2E 2E ACC

CLR A

XCH A,2BH

XCH A,2CH

XCH A,2DH

XCH A,2EH

00

00

00

00

00

12

00

00

00

00

34

34

12

12

12

56

56

56

34

34

78

78

78

78

56

00

12

34

56

78

Note: Using XCHs: 9 bytes, 5 ms

Table 1-6. Shifting a BCD Number One Digit to the Right

2A 2B 2C 2D 2E ACC

MOV R1,# 2EH 00 12 34 56 78 XX

MOV R0, # 2DH 00 12 34 56 78 XX

loop for R1 = 2EH:

LOOP: MOV A, @R1 00 12 34 56 78 78

XCHD A, @R0 00 12 34 58 78 76

SWAP A 00 12 34 58 78 67

MOV @R1, A 00 12 34 58 67 67

DEC R1 00 12 34 58 67 67

DEC R0 00 12 34 58 67 67

CJNE R1, #2AH, LOOP

loop for R1 = 2DH: 00 12 38 45 67 45

loop for R1 = 2CH: 00 18 23 45 67 23

loop for R1 = 2BH: 08 01 23 45 67 01

CLR A 08 01 23 45 67 00

XCH A,2AH 00 01 23 45 67 08
Atmel 8051 Microcontrollers Hardware Manual 1-8

4316E–8051–01/07

The 8051 Instruction Set
repeated for location 2DH. The CJNE instruction (Compare and Jump if Not Equal) is a

loop control that will be described later.

The loop is executed from LOOP to CJNE for R1 = 2EH, 2DH, 2CH and 2BH. At that

point the digit that was originally shifted out on the right has propagated to location 2AH.

Since that location should be left with 0s, the lost digit is moved to the Accumulator.

1.6 External RAM Table 1-7 shows a list of the Data Transfer instructions that access external Data Mem-

ory. Only indirect addressing can be used. The choice is whether to use a one-byte

address, @Ri, where Ri can be either R0 or R1 of the selected register bank, or a two-

byte address, @DPTR. The disadvantage to using 16-bit addresses if only a few

Kbytes of external RAM are involved is that 16-bit addresses use all 8 bits of Port 2 as

address bus. On the other hand, 8-bit addresses allow one to address a few Kbytes of

RAM, as shown in Table 1-7, without having to sacrifice all of Port 2.

All of these instructions execute in 2 ms, with a 12 MHz clock (and X1 mode).

Note that in all external Data RAM accesses, the Accumulator is always either the desti-

nation or source of the data.

The read and write strobes to external RAM are activated only during the execution of a

MOVX instruction. Separately these signals are inactive, and in fact if they’re not going

to be used at all, their pins are available as extra I/O lines.

1.7 Lookup Tables Table 1-8 shows the two instructions that are available for reading lookup tables in Pro-

gram Memory. Since these instructions access only Program Memory, the lookup tables

can be read, not updated. The mnemonic is MOVC for “move constant”.

If the table access is to external Program Memory, then the read strobe is PSEN.

The first MOVC instruction in Table 1-8 can accommodate a table of up to 256 entries,

numbered 0 through 255. The number of the desired entry is loaded into the Accumula-

tor, and the Data Pointer is set up to point to beginning of the table. Then

MOVC A, @A + DPTR

copies the desired table entry into the Accumulator.

The other MOVC instruction works the same way, except the Program Counter (PC) is

used as the table base, and the table is accessed through a subroutine. First the num-

ber of the desired entry is loaded into the Accumulator, and the subroutine is called:

Table 1-7. Data Transfer Instructions that Access External Data Memory Space

Address Width Mnemonic Operation

Execution Time

@ 12MHz (µs)

8 bits MOVX A, @Ri
Read external

RAM @ Ri
2

8 bits MOVX @ Ri, A
Write external

RAM @ Ri
2

16 bits MOVX A, @ DPTR
Read external

RAM @ DPTR
2

16 bits MOVX @ DPTR, A
Write external

RAM @ DPTR
2

1-9 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

The 8051 Instruction Set
MOV A, ENTRY_NUMBER

CALLTABLE

The subroutine “TABLE” would look like this:

TABLE:MOVC A, @A + PC

RET

The table itself immediately follows the RET (return) instruction in Program Memory.

This type of table can have up to 255 entries, numbered 1 through 255. Number 0 can-

not be used, because at the time the MOVC instruction is executed, the PC contains the

address of the RET instruction. An entry numbered 0 would be the RET opcode itself.

1.8 Boolean
Instructions

8051 devices contain a complete Boolean (single-bit) processor. The internal RAM con-

tains 128 addressable bits, and the SFR space can support up to 128 other addressable

bits. All of the port lines are bit-addressable, and each one can be treated as a separate

single-bit port. The instructions that access these bits are not just conditional branches,

but a complete menu of move, set, clear, complement, OR and AND instructions. These

kinds of bit operations are not easily obtained in other architectures with any amount of

byte-oriented software.

The instruction set for the Boolean processor is shown in Table 1-9. All bit accesses are

by direct addressing. Bit addresses 00H through 7FH are in the Lower 128, and bit

addresses 80H through FFH are in SFR space.

Note how easily an internal flag can be moved to a port pin:

MOV C, FLAG

MOV P1.0, C

Table 1-8. Lookup Table Read Instructions

Mnemonic Operation

Execution Time

@ 12MHz (µs)

MOVC A, @A + DPTR Read Pgm Memory at (A + DPTR) 2

MOVC A, @A + PC Read Pgm Memory at (A + PC) 2

Table 1-9. 8051 Boolean Instructions

Mnemonic Operation

Execution Time

@ 12MHz (µs)

ANL C,bit

ANL C,/bit

ORL C,bit

ORL C,/bit

MOV C,bit

MOV bit,C

CLR C

CLR bit

SETB C

SETB bit

CPL C

CPL bit

JC rel

JNC rel

JB bit,rel

JNB bit,rel

JBC bit,rel

C = C AND bit

C = C AND (NOT bit)

C = C OR bit

C = C OR (NOT bit)

C = bit

bit = C

C = 0

bit = 0

C = 1

bit = 1

C = NOT C

bit = NOT bit

Jump if C = 1

Jump if C = 0

Jump if bit = 1

Jump if bit = 0

Jump if bit = 1 ; CLR bit

2

2

2

2

1

2

1

1

1

1

1

1

2

2

2

2

2

Atmel 8051 Microcontrollers Hardware Manual 1-10

4316E–8051–01/07

The 8051 Instruction Set
In this example, FLAG is the name of any addressable bit in the lower 128 or SFR

space. An I/O line (the LSB of Port 1, in the case) is set or cleared depending on

whether the flag bit is 1 or 0.

The Carry bit in the PSW is used as the single-bit Accumulator of the Boolean proces-

sor. Bit instructions that refer to the Carry bit as C assemble as Carry-specific

instructions (CLR C, etc.). The Carry bit also has a direct address, since it resides in the

PSW register, which is bit-addressable.

Note that the Boolean instruction set includes ANL and ORL operations, but not the XRL

(Exclusive OR) operation. An XRL operation is simple to implement in software. Sup-

pose, for example, it is required to form the Exclusive OR of two bits:

C= bit1 XRL bit2

The software to do that could be as follows:
MOV C, bit1

JNB bit2, OVER

CPL C

OVER: (continue)

First, bit 1 is moved to the Carry. If bit 2 = 0, then C now contains the correct result. That

is, bit 1 XRL bit2 = bit1 if bit2 = 0. On the other hand, if bit2 = 1 C now contains the com-

plement of the correct result. It need only be inverted (CPL C) to complete the operation.

This code uses the JNB instruction, one of a series of bit-test instructions which execute

a jump if the addressed bit is set (JC, JB, JBC) or if the addressed bit is not set (JNC,

JNB). In the above case, bit2 is being tested, and if bit2 = 0 the CPL C instruction is

jumped over.

JBC executes the jump if the addressed bit is set, and also clears the bit. Thus a flag

can be tested and cleared in one operation.

All the PSW bits are directly addressable, so the Parity bit, or the general purpose flags,

for example, are also available to the bit-test instructions.

1.8.1 Relative Offset The destination address for these jumps is specified to the assembler by a label or by an

actual address in Program Memory. However, the destination address assembles to a

relative offset byte. This is a signed (two’s complement) offset byte which is added to the

PC in two’s complement arithmetic if the jump is executed.

The range of the jump is therefore -128 to +127 Program Memory bytes relative to the

first byte following the instruction.

Table 1-10. Addressing Modes

Rn Register R7-R0 of the currently selected Register Bank.

direct 8-bit internal data location’s address. This could be an Internal Data RAM location (0-127) or a SFR [i.e., I/O

port, control register, status register, etc. (128-255)].

@Ri 8-bit internal data RAM location (0-255) addressed indirectly through register R1or R0.

#data 8-bit constant included in instruction.

#data 16 16-bit constant included in instruction.

addr 16 16-bit destination address. Used by LCALL and LJMP. A branch can be anywhere within the 64K byte Program

Memory address space.
1-11 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

The 8051 Instruction Set
1.9 Jump
Instructions

Table 1-11 shows the list of unconditional jumps.

The table lists a single “JMP addr” instruction, but in fact there are three -SJMP, LJMP,

AJMP -which differ in the format of the destination address. JMP is a generic mnemonic

which can be used if the programmer does not care how the jump is encoded.

The SJMP instruction encodes the destination address as relative offset, as described

above. The instruction is 2 bytes long, consisting of the opcode and the relative offset

byte. The jump distance is limited to range of -128 to + 127 bytes relative to the instruc-

tion following the SJMP.

The LJMP instruction encodes the destination address as a 16-bit constant. The instruc-

tion is 3 bytes long, consisting of the opcode and two address bytes. The destination

address can be anywhere in the 64K Program Memory space.

The AJMP instruction encodes the destination address as an 11-bit constant. The

instruction is 2 bytes long, consisting of the opcode, which itself contains 3 of the 11

address bits, followed by another byte containing the low 8 bits of the destination

address. When the instruction is executed, these 11 bits are simply substituted for the

low 11 bits in the PC. The high 5 bits stay the same. Hence the destination has to be

within the same 2K block as the instruction following the AJMP.

In all cases the programmer specifies the destination address to the assembler in the

same way: as a label or as a 16-bit constant. The assembler will put the destination

address into the correct format for the given instruction. If the format required by the

instruction will not support the distance to the specified destination address, a “Destina-

tion out of range” message is written, into the list file.

The JMP @ A + DPTR instruction supports case jumps. The destination address is

computed at execution time as the sum of the 16-bit DPTR register and the Accumula-

tor. Typically, DPTR is set up with the address of a jump table, and the Accumulator is

given an index to the table. In a 5-way branch, for example, an integer 0 through 4 is

loaded into the Accumulator.

The code to be executed might be as follows:

MOV DPTR, # JUMP_TABLE

MOV A, INDEX_NUMBER

RL A

JMP @ A + DPTR

addr 11 11-bit destination address. Used by ACALL and AJMP. The branch will be within the same 2K byte page of

program memory as the first byte of the following instruction.

rel Signed (two’s complement) 8-bit offset byte. Used by SJMP and all conditional jumps. Range is -128 to +127

bytes relative to first byte of the following instruction.

bit Direct Addressed bit in Internal Data RAM or Special Function Register.

Table 1-10. Addressing Modes

Table 1-11. Unconditional Jumps in Atmel 8051

Mnemonic Operation Execution Time @ 12MHz (µs)

JMP addr

JMP @A + DPTR

CALL addr

RET

RETI

NOP

Jump to addr

Jump to A + DPTR

Call subroutine at addr

Return from subroutine

Return from interrupt

No operation

2

2

2

2

2

1

Atmel 8051 Microcontrollers Hardware Manual 1-12

4316E–8051–01/07

The 8051 Instruction Set
The RLA instruction converts the index number (0 through 4) to an even number on the

range 0 through 8, because each entry in the jump table is 2 bytes long:

JUMP_TABLE:

AJMP CASE_0

AJMP CASE_1

AJMP CASE_2

AJMP CASE_3

AJMP CASE_4

Table 1-11 shows a single “CALL addr” instruction, but there are two of them -LCALL

and ACALL -which differ in the format in which the subroutine address is given to the

CPU. CALL is a generic mnemonic which can be used if the programmer does not care

which way the address is encoded.

The LCALL instruction uses the 16-bit address format, and the subroutine can be any-
where in the 64K Program Memory space. The ACALL instruction uses the 11-bit format,
and the subroutine must be in the same 2K block as the instruction following the ACALL.

In any case the programmer specifies the subroutine address to the assembler in the
same way: as a label or as a 16-bit constant. The assembler will put the address into the
correct format for the given instructions.

Subroutines should end a RET instruction, which returns execution following the CALL.

RETI is used to return from an interrupt service routine. The only difference between RET
and RETI is that RETI tells the interrupt control system that the interrupt in progress is
done. If there is no interrupt in progress at the time RETI is executed, then the RETI is
functionally identical to RET.

Table 1-12 shows the list of conditional jumps available to the Atmel 8051 user. All of
these jumps specify the destination address by the relative offset method, and so are
limited to a jump distance of -128 to + 127 bytes from the instruction following the condi-
tional jump instruction. Important to note, however, the user specifies to the assembler
the actual destination address the same way as the other jumps: as a label or a 16-bit
constant.

There is no Zero bit in the PSW. The JZ and JNZ instructions test the Accumulator data

for that condition.

The DJNZ instruction (Decrement and Jump if Not Zero) is for loop control. To execute a
loop N times, load a counter byte with N and terminate the loop with DJNZ to the beginning
of the loop, as shown below for N = 10:

MOV COUNTER, # 10

LOOP:(begin loop)

*

*

Table 1-12. Conditional Jumps in Atmel 8051 Devices

Mnemonic Operation Addressing Modes

Execution Time

@ 12MHz (µs)

DIR IND REG IMM

JZ rel Jump if A = 0 Accumulator only 2

JNZ rel Jump if A „ 0 Accumulator only 2

DJNZ <byte>,rel
Decrement and jump if

not zero
 X X 2

CJNZ A,<byte>,rel Jump if A = <byte> X X 2

CJNE <byte>,#data,rel Jump if <byte> = #data X X 2
1-13 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

The 8051 Instruction Set
*

(end loop)

DJNZ COUNTER, LOOP

(continue)

The CJNE instruction (Compare and Jump if Not Equal) can also be used for loop con-

trol as in Table 1-12. Two bytes are specified in the operand field of the instruction. The

jump is executed only if the two bytes are not equal. In the example of Figure 12, the two

bytes were the data in R1 and the constant 2AH. The initial data in R1 was 2EH. Every

time the loop was executed, R1 was decremented, and the looping was to continue until

the R1 data reached 2AH.

Another application of this instruction is in “greater than, less than” comparisons. The

two bytes in the operand field are taken as unsigned integers. If the first is less than the

second, then the Carry bit is set (1). If the first is greater than or equal to the second,

then the Carry bit is cleared.

1.10 Read-Modify-
Write Instruction
Features

See Section 2.5.4, page 76.
Atmel 8051 Microcontrollers Hardware Manual 1-14

4316E–8051–01/07

The 8051 Instruction Set
1.11 Instruction Set
Summary

Note: 1. All mnemonics copyrighted © Intel Corp., 1980.

Mnemonic Description Byte Oscillator

Period

ARITHMETIC OPERATIONS

ADD A,Rn Add register to Accumulator 1 12

ADD A,direct Add direct byte to Accumulator 2 12

ADD A,@Ri Add indirect RAM to Accumulator 1 12

ADD A,#data Add immediate data to Accumulator 2 12

ADDC A,Rn Add register to Accumulator with

Carry

1 12

ADDC A,direct Add direct byte to Accumulator with

Carry

2 12

ADDC A,@Ri Add indirect RAM to Accumulator with

Carry

1 12

ADDC A,#data Add immediate data to Acc with Carry 2 12

SUBB A,Rn Subtract Register from Acc with

borrow

1 12

SUBB A,direct Subtract direct byte from Acc with

borrow

2 12

SUBB A,@Ri Subtract indirect RAM from ACC with

borrow

1 12

SUBB A,#data Subtract immediate data from Acc

with borrow

2 12

INC A Increment Accumulator 1 12

INC Rn Increment register 1 12

INC direct Increment direct byte 2 12

INC @Ri Increment direct RAM 1 12

DEC A Decrement Accumulator 1 12

DEC Rn Decrement Register 1 12

DEC direct Decrement direct byte 2 12

DEC @Ri Decrement indirect RAM 1 12

INC DPTR Increment Data Pointer 1 24

MUL AB Multiply A & B 1 48

DIV AB Divide A by B 1 48

DA A Decimal Adjust Accumulator 1 12

Mnemonic Description Byte Oscillator

Period

LOGICAL OPERATIONS

ANL A,Rn AND Register to Accumulator 1 12

ANL A,direct AND direct byte to Accumulator 2 12

ANL A,@Ri AND indirect RAM to Accumulator 1 12
1-15 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

The 8051 Instruction Set
ANL A,#data AND immediate data to Accumulator 2 12

ANL direct,A AND Accumulator to direct byte 2 12

ANL direct,#data AND immediate data to direct byte 3 24

ORL A,Rn OR register to Accumulator 1 12

ORL A,direct OR direct byte to Accumulator 2 12

ORL A,@Ri OR indirect RAM to Accumulator 1 12

ORL A,#data OR immediate data to Accumulator 2 12

ORL direct,A OR Accumulator to direct byte 2 12

ORL direct,#data OR immediate data to direct byte 3 24

XRL A,Rn Exclusive-OR register to Accumulator 1 12

XRL A,direct Exclusive-OR direct byte to

Accumulator

2 12

XRL A,@Ri Exclusive-OR indirect RAM to

Accumulator

1 12

XRL A,#data Exclusive-OR immediate data to

Accumulator

2 12

XRL direct,A Exclusive-OR Accumulator to direct

byte

2 12

XRL direct,#data Exclusive-OR immediate data to

direct byte

3 24

CLR A Clear Accumulator 1 12

CPL A Complement Accumulator 1 12

RL A Rotate Accumulator Left 1 12

RLC A Rotate Accumulator Left through the

Carry

1 12

LOGICAL OPERATIONS (continued)

RR A Rotate Accumulator Right 1 12

RRC A Rotate Accumulator Right through the

Carry

1 12

SWAP A Swap nibbles within the Accumulator 1 12

DATA TRANSFER

MOV A,Rn Move register to Accumulator 1 12

MOV A,direct Move direct byte to Accumulator 2 12

MOV A,@Ri Move indirect RAM to Accumulator 1 12

MOV A,#data Move immediate data to Accumulator 2 12

MOV Rn,A Move Accumulator to register 1 12

MOV Rn,direct Move direct byte to register 2 24

MOV Rn,#data Move immediate data to register 2 12

MOV direct,A Move Accumulator to direct byte 2 12

MOV direct,Rn Move register to direct byte 2 24

MOV direct,direct Move direct byte to direct 3 24

MOV direct,@Ri Move indirect RAM to direct byte 2 24

Mnemonic Description Byte Oscillator

Period
Atmel 8051 Microcontrollers Hardware Manual 1-16

4316E–8051–01/07

The 8051 Instruction Set
MOV direct,#data Move immediate data to direct byte 3 24

MOV @Ri,A Move Accumulator to indirect RAM 1 12

MOV @Ri,direct Move direct byte to indirect RAM 2 24

MOV @Ri,#data Move immediate data to indirect RAM 2 12

MOV DPTR,#data16 Load Data Pointer with a 16-bit

constant

3 24

MOVC A,@A+DPTR Move Code byte relative to DPTR to

Acc

1 24

MOVC A,@A+PC Move Code byte relative to PC to Acc 1 24

MOVX A,@Ri Move External RAM (8-bit addr) to

Acc

1 24

DATA TRANSFER (continued)

MOVX A,@DPTR Move Exernal RAM (16-bit addr) to

Acc

1 24

MOVX @Ri,A Move Acc to External RAM (8-bit

addr)

1 24

MOVX @DPTR,A Move Acc to External RAM (16-bit

addr)

1 24

PUSH direct Push direct byte onto stack 2 24

POP direct Pop direct byte from stack 2 24

XCH A,Rn Exchange register with Accumulator 1 12

XCH A,direct Exchange direct byte with

Accumulator

2 12

XCH A,@Ri Exchange indirect RAM with

Accumulator

1 12

XCHD A,@Ri Exchange low-order Digit indirect

RAM with Acc

1 12

BOOLEAN VARIABLE MANIPULATION

CLR C Clear Carry 1 12

CLR bit Clear direct bit 2 12

SETB C Set Carry 1 12

SETB bit Set direct bit 2 12

CPL C Complement Carry 1 12

CPL bit Complement direct bit 2 12

ANL C,bit AND direct bit to CARRY 2 24

ANL C,/bit AND complement of direct bit to Carry 2 24

ORL C,bit OR direct bit to Carry 2 24

ORL C,/bit OR complement of direct bit to Carry 2 24

MOV C,bit Move direct bit to Carry 2 12

MOV bit,C Move Carry to direct bit 2 24

JC rel Jump if Carry is set 2 24

JNC rel Jump if Carry not set 2 24

Mnemonic Description Byte Oscillator

Period
1-17 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

The 8051 Instruction Set
JB bit,rel Jump if direct Bit is set 3 24

JNB bit,rel Jump if direct Bit is Not set 3 24

JBC bit,rel Jump if direct Bit is set & clear bit 3 24

PROGRAM BRANCHING

ACALL addr11 Absolute Subroutine Call 2 24

LCALL addr16 Long Subroutine Call 3 24

RET Return from Subroutine 1 24

RETI Return from interrupt 1 24

AJMP addr11 Absolute Jump 2 24

LJMP addr16 Long Jump 3 24

SJMP rel Short Jump (relative addr) 2 24

JMP @A+DPTR Jump indirect relative to the DPTR 1 24

JZ rel Jump if Accumulator is Zero 2 24

JNZ rel Jump if Accumulator is Not Zero 2 24

CJNE A,direct,rel Compare direct byte to Acc and Jump

if Not Equal

3 24

CJNE A,#data,rel Compare immediate to Acc and Jump

if Not Equal

3 24

CJNE Rn,#data,rel Compare immediate to register and

Jump if Not Equal

3 24

CJNE @Ri,#data,rel Compare immediate to indirect and

Jump if Not Equal

3 24

DJNZ Rn,rel Decrement register and Jump if Not

Zero

2 24

DJNZ direct,rel Decrement direct byte and Jump if

Not Zero

3 24

NOP No Operation 1 12

Mnemonic Description Byte Oscillator

Period
Atmel 8051 Microcontrollers Hardware Manual 1-18

4316E–8051–01/07

The 8051 Instruction Set
1.12 Instructions That
Affect Flag
Settings

Note: Operations on SFR byte address 208 or bit addresses 209-215 (that is, the PSW or bits in the PSW) also affect flag settings.

Table 1-13. Instructions that affect Flag Settings

Instruction Flag Instruction Flag

C OV AC C OV AC

ADD X X X CLR C O

ADDC X X X CPL C X

SUBB X X X ANL C,bit X

MUL O X ANL C,/bit X

DIV O X ORL C,bit X

DA X ORL C,/bit X

RRC X MOV C,bit X

RLC X CJNE X

SETB C 1
1-19 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

The 8051 Instruction Set
1.13 Instruction Table Table 1-14 shows the Hex value of each instruction detailing the:

� byte size

� number of cycles

� flags modified by the instruction
Atmel 8051 Microcontrollers Hardware Manual 1-20

4316E–8051–01/07

The 8051 Instruction Set
Table 1-14. 8051 Instruction Table

x
7

IN
C

 @
R

1
1
-1

D
E

C
 @

R
1

1
-1

A
D

D
 A

,@
R

1

1
-1

,C
,O

V
,A

C

A
D

D
C

 A
,@

R
1

1
-1

,C
,O

V
,A

C

O
R

L
 A

,@
R

1

1
-1

A
N

L
 A

,@
R

1

1
-1

X
R

L
 A

,@
R

1

1
-1

M
O

V
 @

R
1

,#
im

m

2
-1

M
O

V
 d

ir
,@

R
1

2
-2

S
U

B
B

 A
,@

R
1

1
-1

,C
,O

V
,A

C

M
O

V
 @

R
1

,d
ir

2
-2

C
J
N

E
 @

R
1
,#

im
m

,r
e

l

3
-2

,C

X
C

H
 A

,@
R

1

1
-1

X
C

H
D

 A
,@

R
1

1
-1

M
O

V
 A

,@
R

1

1
-1

M
O

V
X

 @
R

1
,A

1
-1

x
6

IN
C

 @
R

0
1

-1

D
E

C
 @

R
0

1
-1

A
D

D
 A

,@
R

0

1
-1

,C
,O

V
,A

C

A
D

D
C

 A
,@

R
0

1
-1

,C
,O

V
,A

C

O
R

L
,
A

,@
R

0

1
-1

A
N

L
 A

,@
R

0

1
-1

X
R

L
 A

,@
R

0

1
-1

M
O

V
 @

R
0
,#

im
m

2
-1

M
O

V
 d

ir
,@

R
0

2
-2

S
U

B
B

 A
,@

R
0

1
-1

,C
,O

V
,A

C

M
O

V
 @

R
0
,d

ir

2
-2

C
J
N

E
 @

R
0
,#

im
m

,r
e
l

3
-2

,C

X
C

H
 A

,@
R

0

1
-1

X
C

H
D

 A
,@

R
0

1
-1

M
O

V
 A

,@
R

0

1
-1

M
O

V
X

 @
R

0
,A

1
-1

x
5

IN
C

 d
ir

2
-1

D
E

C
 d

ir

2
-1

A
D

D
 A

,d
ir

2
-1

,C
,O

V
,A

C

A
D

D
C

 A
,d

ir

2
-1

,C
,O

V
,A

C

O
R

L
 A

,d
ir

2
-1

A
N

L
 A

,d
ir

2
-1

X
R

L
 A

,d
ir

2
-1

M
O

V
 d

ir
,#

im
m

3
-2

M
O

V
 d

ir
,d

ir

3
-2

S
U

B
B

 A
,d

ir

2
-1

,C
,O

V
,A

C

C
J
N

E
 A

,d
ir
,r

e
l

3
-2

,C

X
C

H
 A

,d
ir

2
-1

D
J
N

Z
 d

ir
,r

e
l

3
-2

M
O

V
 A

,d
ir

2
-1

M
O

V
 d

ir
,A

2
-1

x
4

IN
C

 A
1

-1

D
E

C
 A

1
-1

A
D

D
 A

,#
im

m
2

-1
,C

,O
V

,A
C

A
D

D
C

 A
,#

im
m

2
-1

,C
,O

V
,A

C

O
R

L
 A

,#
im

m

2
-1

A
N

L
 A

,#
im

m

2
-1

X
R

L
 A

,#
im

m

2
-1

M
O

V
 A

,#
im

m

2
-1

D
IV

 A
B

1
-4

,C
=

0
,O

V

S
U

B
B

 A
,#

im
m

2
-1

,C
,O

V
,A

C

M
U

L
 A

B

1
-4

,C
=

0
,O

V

C
J
N

E
 A

,#
im

m
,r

e
l

3
-2

,C

S
W

A
P

 A

1
-1

D
A

 A

1
-1

,C

C
L
R

 A

1
-1

C
P

L
 A

1
-1

x
3

R
R

 A
1

-1

R
R

C
 A

1
-1

.C

R
L
 A

1
-1

R
L
C

 A

1
-1

,C

O
R

L
 d

ir
,#

im
m

3
-2

A
N

L
 d

ir
,#

im
m

3
-2

X
R

L
 d

ir
,#

im
m

3
-2

J
M

P
 @

A
+

D
P

T
R

1
-2

M
O

V
C

 A
,@

A
+

P
C

1
-2

M
O

V
C

 A
,@

A
+

D
P

T
R

1
-2

IN
C

 D
P

T
R

1
-2

C
P

L
 C

1
-1

,C

C
L

R
 C

1
-1

,C
=

0

S
E

T
B

 C

1
-1

,c
=

1

M
O

V
X

 A
,@

R
1

1
-2

M
O

V
X

 @
R

1
,A

1
-2

x
2

L
J
M

P
 c

o
d
e

3
-2

L
C

A
L
L

 c
o
d

e
3
-2

R
E

T
1
-2

R
E

T
I

1
-2

O
R

L
 d

ir
,A

2
-1

A
N

L
 d

ir
,A

2
-1

X
R

L
 d

ir
,A

2
-1

O
R

L
 C

,b
it

2
-2

,C

A
N

L
 C

,b
it

2
-2

,C

M
O

V
 b

it
,C

2
-2

M
O

V
 C

,b
it

2
-1

,C

C
P

L
 b

it

2
-1

C
L
R

 b
it

2
-1

S
E

T
B

 b
it

2
-1

M
O

V
X

 A
,@

R
0

1
-2

M
O

V
X

 @
R

0
,A

1
-2

x
1

A
J
M

P
 a

d
d
r

2
-2

A
C

A
L
L

 a
d
d

r
2
-2

A
J
M

P
 a

d
d
r1

1
2
-2

A
C

A
L
L
 a

d
d

r1
1

2
-2

A
J
M

P
 a

d
d
r1

1

2
-2

A
C

A
L
L
 a

d
d

r1
1

2
-2

A
J
M

P
 a

d
d
r1

1

2
-2

A
C

A
L
L
 a

d
d

r1
1

2
-2

A
J
M

P
 a

d
d
r1

1

2
-2

A
C

A
L
L
 a

d
d

r1
1

2
-2

A
J
M

P
 a

d
d
r1

1

2
-2

A
C

A
L
L
 a

d
d

r1
1

2
-2

A
J
M

P
 a

d
d
r1

1

2
-2

A
C

A
L
L
 a

d
d

r1
1

2
-2

A
J
M

P
 a

d
d
r1

1

2
-2

A
C

A
L
L
 a

d
d

r1
1

2
-2

x
0

N
O

P
1

-1

J
B

C
 b

it
,r

e
l

3
-2

J
B

 b
it
,r

e
l

3
-2

J
N

B
 b

it
,r

e
l

3
-2

J
C

 r
e
l

2
-2

J
N

C
 r

e
l

2
-2

J
Z

 r
e
l

2
-2

J
N

Z
 r

e
l

2
-2

S
J
M

P
 r

e
l

2
-2

M
O

V
 D

P
T

R
,#

im
m

1
6

3
-2

O
R

L
 C

,/
b
it

2
-2

,C

A
N

L
 C

,/
b

it

2
-2

,C

P
U

S
H

 d
ir

2
-2

P
O

P
 d

ir

2
-2

M
O

V
X

 A
,@

D
P

T
R

1
-2

M
O

V
X

 @
D

P
T

R
,A

1
-2

O
x

1
x

2
x

3
x

4
x

5
x

6
x

7
x

8
x

9
x

A
x

B
x

C
x

D
x

E
x

F
x

1-21 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

The 8051 Instruction Set
x
F

IN
C

 R
7

1
-1

D
E

C
 R

7
1

-1

A
D

D
 A

,R
7

1
-1

,C
,O

V
,A

C

A
D

D
C

 A
,R

7

1
-1

,C
,O

V
,A

C

O
R

L
 A

,R
7

1
-1

A
N

L
 A

,R
7

1
-1

X
R

L
 A

,R
7

1
-1

M
O

V
 R

7
,#

im
m

2
-1

M
O

V
 d

ir
,R

7

2
-2

S
U

B
B

 A
,R

7

1
-1

,C
,O

V
,A

C

M
O

V
 R

7
,d

ir

2
-2

C
J
N

E
 R

7
,#

im
m

,r
e

l

3
-2

,C

X
C

H
 A

,R
7

1
-1

D
J
N

Z
 R

7
,r

e
l

2
-2

M
O

V
 A

,R
7

1
-1

M
O

V
X

 R
7
,A

1
-1

x
E

IN
C

 R
6

1
-1

D
E

C
 R

6
1
-1

A
D

D
 A

,R
6

1
-1

,C
,O

V
,A

C

A
D

D
C

 A
,R

6

1
-1

,C
,O

V
,A

C

O
R

L
 A

,R
6

1
-1

A
N

L
 A

,R
6

1
-1

X
R

L
 A

,R
6

1
-1

M
O

V
 R

6
,#

im
m

2
-1

M
O

V
 d

ir
,R

6

2
-2

S
U

B
B

 A
,R

6

1
-1

,C
,O

V
,A

C

M
O

V
 R

6
,d

ir

2
-2

C
J
N

E
 R

6
,#

im
m

,r
e
l

3
-2

,C

X
C

H
 A

,R
6

1
-1

D
J
N

Z
 R

6
,r

e
l

2
-2

M
O

V
 A

,R
6

1
-1

M
O

V
X

 R
6

,A

1
-1

x
D

IN
C

 R
5

1
-1

D
E

C
 R

5
1
-1

A
D

D
 A

,R
5

1
-1

,C
,O

V
,A

C

A
D

D
C

 A
,R

5

1
-1

,C
,O

V
,A

C

O
R

L
 A

,R
5

1
-1

A
N

L
 A

,R
5

1
-1

X
R

L
 A

,R
5

1
-1

M
O

V
 R

5
,#

im
m

2
-1

M
O

V
 d

ir
,R

5

2
-2

S
U

B
B

 A
,R

5

1
-1

,C
,O

V
,A

C

M
O

V
 R

5
,d

ir

2
-2

C
J
N

E
 R

5
,#

im
m

,r
e

l

3
-2

,C

X
C

H
 A

,R
5

1
-1

D
J
N

Z
 R

5
,r

e
l

2
-2

M
O

V
 A

,R
5

1
-1

M
O

V
X

 R
5
,A

1
-1

x
C

IN
C

 R
4

1
-1

D
E

C
 R

4
1

-1

A
D

D
 A

,R
4

1
-1

,C
,O

V
,A

C

A
D

D
C

 A
,R

4

1
-1

,C
,O

V
,A

C

O
R

L
 A

,R
4

1
-1

A
N

L
 A

,R
4

1
-1

X
R

L
 A

,R
4

1
-1

M
O

V
 R

4
,#

im
m

2
-1

M
O

V
 d

ir
,R

4

2
-2

S
U

B
B

 A
,R

4

1
-1

,C
,O

V
,A

C

M
O

V
 R

4
,d

ir

2
-2

C
J
N

E
 R

4
,#

im
m

,r
e
l

3
-2

,C

X
C

H
 A

,R
4

1
-1

D
J
N

Z
 R

4
,r

e
l

2
-2

M
O

V
 A

,R
4

1
-1

M
O

V
X

 R
4
,A

1
-1

x
B

IN
C

 R
3

1
-1

D
E

C
 R

3
1
-1

A
D

D
 A

,R
3

1
-1

,C
,O

V
,A

C

A
D

D
C

 A
,R

3

1
-1

,C
,O

V
,A

C

O
R

L
 A

,R
3

1
-1

A
N

L
 A

,R
3

1
-1

X
R

L
 A

,R
3

1
-1

M
O

V
 R

3
,#

im
m

2
-1

M
O

V
 d

ir
,R

3

2
-2

S
U

B
B

 A
,R

3

1
-1

,C
,O

V
,A

C

M
O

V
 R

3
,d

ir

2
-2

C
J
N

E
 R

3
,#

im
m

,r
e
l

3
-2

,C

X
C

H
 A

,R
3

1
-1

D
J
N

Z
 R

3
,r

e
l

2
-2

M
O

V
 A

,R
3

1
-1

M
O

V
X

 R
3

,A

1
-1

x
A

IN
C

 R
2

1
-1

D
E

C
 R

2
1
-1

A
D

D
 A

,R
2

1
-1

,C
,O

V
,A

C

A
D

D
C

 A
,R

2

1
-1

,C
,O

V
,A

C

O
R

L
 A

,R
2

1
-1

A
N

L
 A

,R
2

1
-1

X
R

L
 A

,R
2

1
-1

M
O

V
 R

2
,#

im
m

2
-1

M
O

V
 d

ir
,R

2

2
-2

S
U

B
B

 A
,R

2

1
-1

,C
,O

V
,A

C

M
O

V
 R

2
,d

ir

2
-2

C
J
N

E
 R

2
,#

im
m

,r
e

l

3
-2

,C

X
C

H
 A

,R
2

1
-1

D
J
N

Z
 R

2
,r

e
l

2
-2

M
O

V
 A

,R
2

1
-1

M
O

V
X

 R
2
,A

1
-1

x
9

IN
V

C
 R

1
1

-1

D
E

C
 R

1
1

-1

A
D

D
 A

,R
1

1
-1

,C
,O

V
,A

C

A
D

D
C

 A
,R

1

1
-1

,C
,O

V
,A

C

O
R

L
 A

,R
1

1
-1

A
N

L
 A

,R
1

1
-1

X
R

L
 A

,R
1

1
-1

M
O

V
 R

1
,#

im
m

2
-1

M
O

V
 d

ir
,R

1

2
-2

S
U

B
B

 A
,R

1

1
-1

,C
,O

V
,A

C

M
O

V
 R

1
,d

ir

2
-2

C
J
N

E
 R

1
,#

im
m

,r
e
l

3
-2

,C

X
C

H
 A

,R
1

1
-1

D
J
N

Z
 R

1
,r

e
l

2
-2

M
O

V
 A

,R
1

1
-1

M
O

V
X

 R
1

,A

1
-1

x
8

IN
C

 R
0

1
-1

D
E

C
 R

0
1
-1

A
D

D
 A

,R
0

1
-1

,C
,O

V
,A

C

A
D

D
C

 A
,R

0

1
-1

,C
,O

V
,A

C

O
R

L
 A

,R
0

1
-1

A
N

L
 A

,R
0

1
-1

X
R

L
 A

,R
0

1
-1

M
O

V
 R

0
,#

im
m

2
-1

M
O

V
 d

ir
,R

0

2
-2

S
U

B
B

 A
,R

0

1
-1

,C
,O

V
,A

C

M
O

V
 R

0
,d

ir

2
-2

C
J
N

E
 R

0
,#

im
m

,r
e
l

3
-2

,C

X
C

H
 A

,R
0

1
-1

D
J
N

Z
 R

0
,r

e
l

2
-2

M
O

V
 A

,R
0

1
-1

M
O

V
X

 R
0
,A

1
-1

O
x

1
x

2
x

3
x

4
x

5
x

6
x

7
x

8
x

9
x

A
x

B
x

C
x

D
x

E
x

F
x

Table 1-14. 8051 Instruction Table (Continued)
Atmel 8051 Microcontrollers Hardware Manual 1-22

4316E–8051–01/07

The 8051 Instruction Set
1.14 Instruction Definitions

1.14.1 ACALL addr11

Function: Absolute Call

Description: ACALL unconditionally calls a subroutine located at the indicated address. The instruction increments the PC

twice to obtain the address of the following instruction, then pushes the 16-bit result onto the stack (low-order

byte first) and increments the Stack Pointer twice. The destination address is obtained by successively

concatenating the five high-order bits of the incremented PC, opcode bits 7 through 5, and the second byte of

the instruction. The subroutine called must therefore start within the same 2 K block of the program memory as

the first byte of the instruction following ACALL. No flags are affected.

Example: Initially SP equals 07H. The label SUBRTN is at program memory location 0345 H. After executing the following

instruction,

ACALL SUBRTN

at location 0123H, SP contains 09H, internal RAM locations 08H and 09H will contain 25H and 01H, respectively,

and the PC contains 0345H.

Bytes: 2

Cycles: 2

Encoding: a10 a9 a8 1 0 0 0 1 a7 a6 a5 a4 a3 a2 a1 a0

Operation: ACALL

(PC) ‹ (PC) + 2

(SP) ‹ (SP) + 1

((SP)) ‹ (PC7-0)

(SP) ‹ (SP) + 1

((SP)) ‹ (PC15-8)

(PC10-0) ‹ page address
1-23 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

The 8051 Instruction Set
1.14.2 ADD A,<src-byte>

Function: Add

Description: ADD adds the byte variable indicated to the Accumulator, leaving the result in the Accumulator. The carry and

auxiliary-carry flags are set, respectively, if there is a carry-out from bit 7 or bit 3, and cleared otherwise. When

adding unsigned integers, the carry flag indicates an overflow occurred.

OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carry-out of bit 7 but not bit 6; otherwise, OV is

cleared. When adding signed integers, OV indicates a negative number produced as the sum of two positive

operands, or a positive sum from two negative operands.

Four source operand addressing modes are allowed: register, direct, register-indirect, or immediate.

Example: The Accumulator holds 0C3H (1100001lB), and register 0 holds 0AAH (10101010B). The following instruction,

ADD A,R0

leaves 6DH (01101101B) in the Accumulator with the AC flag cleared and both the carry flag and OV set to 1.

ADD A,Rn

Bytes: 1

Cycles: 1

Encoding: 0 0 1 0 1 r r r

Operation: ADD

(A) ‹ (A) + (Rn)

ADD A,direct

Bytes: 2

Cycles: 1

Encoding: 0 0 1 0 0 1 0 1 direct address

Operation: ADD

(A) ‹ (A) + (direct)

ADD A,@Ri

Bytes: 1

Cycles: 1

Encoding: 0 0 1 0 0 1 1 i

Operation: ADD

(A) ‹ (A) + ((Ri))

ADD A,#data

Bytes: 2

Cycles: 1

Encoding: 0 0 1 0 0 1 0 0 immediate data

Operation: ADD

(A) ‹ (A) + #data
Atmel 8051 Microcontrollers Hardware Manual 1-24

4316E–8051–01/07

The 8051 Instruction Set
1.14.3 ADDC A, <src-byte>

Function: Add with Carry

Description: ADDC simultaneously adds the byte variable indicated, the carry flag and the Accumulator contents, leaving the

result in the Accumulator. The carry and auxiliary-carry flags are set respectively, if there is a carry-out from bit 7

or bit 3, and cleared otherwise. When adding unsigned integers, the carry flag indicates an overflow occurred.

OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carry-out of bit 7 but not out of bit 6; otherwise OV

is cleared. When adding signed integers, OV indicates a negative number produced as the sum of two positive

operands or a positive sum from two negative operands.

Four source operand addressing modes are allowed: register, direct, register-indirect, or immediate.

Example: The Accumulator holds 0C3H (11000011B) and register 0 holds 0AAH (10101010B) with the carry flag set. The

following instruction,

ADDC A,R0

leaves 6EH (01101110B) in the Accumulator with AC cleared and both the Carry flag and OV set to 1.

ADDC A,Rn

Bytes: 1

Cycles: 1

Encoding: 0 0 1 1 1 r r r

Operation: ADDC

(A) ‹ (A) + (C) + (Rn)

ADDC A,direct

Bytes: 2

Cycles: 1

Encoding: 0 0 1 1 0 1 0 1 direct address

Operation: ADDC

(A) ‹ (A) + (C) + (direct)

ADDC A,@Ri

Bytes: 1

Cycles: 1

Encoding: 0 0 1 1 0 1 1 i

Operation: ADDC

(A) ‹ (A) + (C) + ((Ri))

ADDC A,#data

Bytes: 2

Cycles: 1

Encoding: 0 0 1 1 0 1 0 0 immediate data

Operation: ADDC

(A) ‹ (A) + (C) + #data
1-25 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

The 8051 Instruction Set
1.14.4 AJMPaddr11

Function: Absolute Jump

Description: AJMP transfers program execution to the indicated address, which is formed at run-time by concatenating the

high-order five bits of the PC (after incrementing the PC twice), opcode bits 7 through 5, and the second byte of

the instruction. The destination must therfore be within the same 2 K block of program memory as the first byte

of the instruction following AJMP.

Example: The label JMPADR is at program memory location 0123H. The following instruction,

AJMP JMPADR

is at location 0345H and loads the PC with 0123H.

Bytes: 2

Cycles: 2

Encoding: a10 a9 a8 0 0 0 0 1 a7 a6 a5 a4 a3 a2 a1 a0

Operation: AJMP

(PC) ‹ (PC) + 2

(PC10-0) ‹ page address
Atmel 8051 Microcontrollers Hardware Manual 1-26

4316E–8051–01/07

The 8051 Instruction Set
1.14.5 ANL<dest-byte>,<src-byte>

Function: Logical-AND for byte variables

Description: ANL performs the bitwise logical-AND operation between the variables indicated and stores the results in the

destination variable. No flags are affected.

The two operands allow six addressing mode combinations. When the destination is the Accumulator, the source

can use register, direct, register-indirect, or immediate addressing; when the destination is a direct address, the

source can be the Accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read

from the output data latch, not the input pins.

Example: If the Accumulator holds 0C3H (1100001lB), and register 0 holds 55H (01010101B), then the following

instruction,

ANL A,R0

leaves 41H (01000001B) in the Accumulator.

When the destination is a directly addressed byte, this instruction clears combinations of bits in any RAM

location or hardware register. The mask byte determining the pattern of bits to be cleared would either be a

constant contained in the instruction or a value computed in the Accumulator at run-time. The following

instruction,

ANL P1,#01110011B

clears bits 7, 3, and 2 of output port 1.

ANL A,Rn

Bytes: 1

Cycles: 1

Encoding: 0 1 0 1 1 r r r

Operation: ANL

(A) ‹ (A) Ù (Rn)

ANL A,direct

Bytes: 2

Cycles: 1

Encoding: 0 1 0 1 0 1 0 1 direct address

Operation: ANL

(A) ‹ (A) Ù (direct)

ANL A,@Ri

Bytes: 1

Cycles: 1

Encoding: 0 1 0 1 0 1 1 i

Operation: ANL

(A) ‹ (A) Ù ((Ri))
1-27 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

The 8051 Instruction Set
1.14.6 ANLC,<src-bit>

ANL A,#data

Bytes: 2

Cycles: 1

Encoding: 0 1 0 1 0 1 0 0 immediate data

Operation: ANL

(A) ‹ (A) Ù #data

ANL direct,A

Bytes: 2

Cycles: 1

Encoding: 0 1 0 1 0 0 1 0 direct address

Operation: ANL

(direct) ‹ (direct) Ù (A)

ANL direct,#data

Bytes: 3

Cycles: 2

Encoding: 0 1 0 1 0 0 1 1 direct address immediate data

Operation: ANL

(direct) ‹ (direct) Ù #data

Function: Logical-AND for bit variables

Description: If the Boolean value of the source bit is a logical 0, then ANL C clears the carry flag; otherwise, this instruction

leaves the carry flag in its current state. A slash (/) preceding the operand in the assembly language indicates

that the logical complement of the addressed bit is used as the source value, but the source bit itself is not

affected. No other flags are affected.

Only direct addressing is allowed for the source operand.

Example: Set the carry flag if, and only if, P1.0 = 1, ACC.7 = 1, and OV = 0:

MOV C,P1.0 ;LOAD CARRY WITH INPUT PIN STATE

ANL C,ACC.7 ;AND CARRY WITH ACCUM. BIT 7

ANL C,/OV ;AND WITH INVERSE OF OVERFLOW FLAG

ANL C,bit

Bytes: 2

Cycles: 2

Encoding: 1 0 0 0 0 0 1 0 bit address

Operation: ANL

(C) ‹ (C) Ù (bit)
Atmel 8051 Microcontrollers Hardware Manual 1-28

4316E–8051–01/07

The 8051 Instruction Set
1.14.7 CJNE <dest-
byte>,<src-byte>, rel

ANL C,/bit

Bytes: 2

Cycles: 2

Encoding: 1 0 1 1 0 0 0 0 bit address

Operation: ANL

(C) ‹ (C) Ù (bit)

Function: Compare and Jump if Not Equal.

Description: CJNE compares the magnitudes of the first two operands and branches if their values are not equal. The branch

destination is computed by adding the signed relative-displacement in the last instruction byte to the PC, after

incrementing the PC to the start of the next instruction. The carry flag is set if the unsigned integer value of

<dest-byte> is less than the unsigned integer value of <src-byte>; otherwise, the carry is cleared. Neither

operand is affected.

The first two operands allow four addressing mode combinations: the Accumulator may be compared with any

directly addressed byte or immediate data, and any indirect RAM location or working register can be compared

with an immediate constant.

Example: The Accumulator contains 34H. Register 7 contains 56H. The first instruction in the sequence,

CJNE R7, # 60H, NOT_EQ

; ;R7 = 60H.

NOT_EQ: JC REQ_LOW ;IF R7 < 60H.

; ;R7 > 60H.

sets the carry flag and branches to the instruction at label NOT_EQ. By testing the carry flag, this instruction

determines whether R7 is greater or less than 60H.

If the data being presented to Port 1 is also 34H, then the following instruction,

WAIT: CJNE A, P1,WAIT

clears the carry flag and continues with the next instruction in sequence, since the Accumulator does equal the

data read from P1. (If some other value was being input on P1, the program loops at this point until the P1 data

changes to 34H.)

CJNE A,direct,rel

Bytes: 3

Cycles: 2

Encoding: 1 0 1 1 0 1 0 1 direct address rel. address

Operation: (PC) ‹ (PC) + 3

IF (A) < > (direct)

THEN

(PC) ‹ (PC) + relative offset

IF (A) < (direct)

THEN

(C) ‹ 1

ELSE

(C) ‹ 0
1-29 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

The 8051 Instruction Set
CJNE A,#data,rel

Bytes: 3

Cycles: 2

Encoding: 1 0 1 1 0 1 0 0 immediate data rel. address

Operation: (PC) ‹ (PC) + 3

IF (A) < > data

THEN

(PC) ‹ (PC) + relative offset

IF (A) < data

THEN

(C) ‹ 1

ELSE

(C) ‹ 0

CJNE Rn,#data,rel

Bytes: 3

Cycles: 2

Encoding: 1 0 1 1 1 r r r immediate data rel. address

Operation: (PC) ‹ (PC) + 3

IF (Rn) < > data

THEN

(PC) ‹ (PC) + relative offset

IF (Rn) < data

THEN

(C) ‹ 1

ELSE

(C) ‹ 0

CJNE @Ri,data,rel

Bytes: 3

Cycles: 2

Encoding: 1 0 1 1 0 1 1 i immediate data rel. address

Operation: (PC) ‹ (PC) + 3

IF ((Ri)) < > data

THEN

(PC) ‹ (PC) + relative offset

IF ((Ri)) < data

THEN

(C) ‹ 1

ELSE

(C) ‹ 0
Atmel 8051 Microcontrollers Hardware Manual 1-30

4316E–8051–01/07

The 8051 Instruction Set
1.14.8 CLR A

1.14.9 CLR bit

Function: Clear Accumulator

Description: CLR A clears the Accumulator (all bits set to 0). No flags are affected

Example: The Accumulator contains 5CH (01011100B). The following instruction,CLR Aleaves the Accumulator set to 00H

(00000000B).

Bytes: 1

Cycles: 1

Encoding: 1 1 1 0 0 1 0 0

Operation: CLR

(A) ‹ 0

Function: Clear bit

Description: CLR bit clears the indicated bit (reset to 0). No other flags are affected. CLR can operate on the carry flag or any

directly addressable bit.

Example: Port 1 has previously been written with 5DH (01011101B). The following instruction,CLR P1.2 leaves the port set

to 59H (01011001B).

CLR C

Bytes: 1

Cycles: 1

Encoding: 1 1 0 0 0 0 1 1

Operation: CLR

(C) ‹ 0

CLR bit

Bytes: 2

Cycles: 1

Encoding: 1 1 0 0 0 0 1 0 bit address

Operation: CLR

(bit) ‹ 0
1-31 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

The 8051 Instruction Set
1.14.10 CPL A

1.14.11 CPL bit

Function: Complement Accumulator

Description: CPLA logically complements each bit of the Accumulator (one’s complement). Bits which previously contained a

1 are changed to a 0 and vice-versa. No flags are affected.

Example: The Accumulator contains 5CH (01011100B). The following instruction,

CPL A

leaves the Accumulator set to 0A3H (10100011B).

Bytes: 1

Cycles: 1

Encoding: 1 1 1 1 0 1 0 0

Operation: CPL

(A) ‹ (A)

Function: Complement bit

Description: CPL bit complements the bit variable specified. A bit that had been a 1 is changed to 0 and vice-versa. No other

flags are affected. CLR can operate on the carry or any directly addressable bit.

Note: When this instruction is used to modify an output pin, the value used as the original data is read from the

output data latch, not the input pin.

Example: Port 1 has previously been written with 5BH (01011101B). The following instruction sequence,CPL P1.1CPL

P1.2 leaves the port set to 5BH (01011011B).

CPL C

Bytes: 1

Cycles: 1

Encoding: 1 0 1 1 0 0 1 1

Operation: CPL

(C) ‹ (C)

CPL bit

Bytes: 2

Cycles: 1

Encoding: 1 0 1 1 0 0 1 0 bit address

Operation: CPL

(bit) ‹ (bit)
Atmel 8051 Microcontrollers Hardware Manual 1-32

4316E–8051–01/07

The 8051 Instruction Set
1.14.12 DA A

Function: Decimal-adjust Accumulator for Addition

Description: DA A adjusts the eight-bit value in the Accumulator resulting from the earlier addition of two variables (each in

packed-BCD format), producing two four-bit digits. Any ADD or ADDC instruction may have been used to

perform the addition.

If Accumulator bits 3 through 0 are greater than nine (xxxx1010-xxxx1111), or if the AC flag is one, six is added to

the Accumulator producing the proper BCD digit in the low-order nibble. This internal addition sets the carry flag

if a carry-out of the low-order four-bit field propagates through all high-order bits, but it does not clear the carry

flag otherwise.

If the carry flag is now set, or if the four high-order bits now exceed nine (1010xxxx-1111xxxx), these high-order

bits are incremented by six, producing the proper BCD digit in the high-order nibble. Again, this sets the carry

flag if there is a carry-out of the high-order bits, but does not clear the carry. The carry flag thus indicates if the

sum of the original two BCD variables is greater than 100, allowing multiple precision decimal addition. OV is not

affected.

All of this occurs during the one instruction cycle. Essentially, this instruction performs the decimal conversion by

adding 00H, 06H, 60H, or 66H to the Accumulator, depending on initial Accumulator and PSW conditions.

Note: DA A cannot simply convert a hexadecimal number in the Accumulator to BCD notation, nor does DAA

apply to decimal subtraction.

Example: The Accumulator holds the value 56H (01010110B), representing the packed BCD digits of the decimal number

56. Register 3 contains the value 67H (01100111B), representing the packed BCD digits of the decimal number

67. The carry flag is set. The following instruction sequence

ADDC A,R3

DA A

first performs a standard two’s-complement binary addition, resulting in the value 0BEH (10111110) in the

Accumulator. The carry and auxiliary carry flags are cleared.

The Decimal Adjust instruction then alters the Accumulator to the value 24H (00100100B), indicating the packed

BCD digits of the decimal number 24, the low-order two digits of the decimal sum of 56, 67, and the carry-in. The

carry flag is set by the Decimal Adjust instruction, indicating that a decimal overflow occurred. The true sum of

56, 67, and 1 is 124.

BCD variables can be incremented or decremented by adding 01H or 99H. If the Accumulator initially holds 30H

(representing the digits of 30 decimal), then the following instruction sequence,

ADD A, # 99H

DA A

leaves the carry set and 29H in the Accumulator, since 30 + 99 = 129. The low-order byte of the sum can be

interpreted to mean 30 - 1 = 29.

Bytes: 1

Cycles: 1

Encoding: 1 1 0 1 0 1 0 0

Operation: DA

-contents of Accumulator are BCD

IF [[(A3-0) > 9] Ú [(AC) = 1]]

THEN (A3-0) ‹ (A3-0) + 6

AND

IF [[(A7-4) > 9] Ú [(C) = 1]]

THEN (A7-4) ‹ (A7-4) + 6
1-33 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

The 8051 Instruction Set
1.14.13 DECbyte

Function: Decrement

Description: DEC byte decrements the variable indicated by 1. An original value of 00H underflows to 0FFH. No flags are

affected. Four operand addressing modes are allowed: accumulator, register, direct, or register-indirect.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read

from the output data latch, not the input pins.

Example: Register 0 contains 7FH (01111111B). Internal RAM locations 7EH and 7FH contain 00H and 40H, respectively.

The following instruction sequence,

DEC @R0

DEC R0

DEC @R0

leaves register 0 set to 7EH and internal RAM locations 7EH and 7FH set to 0FFH and 3FH.

DEC A

Bytes: 1

Cycles: 1

Encoding: 0 0 0 1 0 1 0 0

Operation: DEC

(A) ‹ (A) - 1

DEC Rn

Bytes: 1

Cycles: 1

Encoding: 0 0 0 1 1 r r r

Operation: DEC

(Rn) ‹ (Rn) - 1

DEC direct

Bytes: 2

Cycles: 1

Encoding: 0 0 0 1 0 1 0 1 direct address

Operation: DEC

(direct) ‹ (direct) - 1

DEC @Ri

Bytes: 1

Cycles: 1

Encoding: 0 0 0 1 0 1 1 i

Operation: DEC

((Ri)) ‹ ((Ri)) - 1
Atmel 8051 Microcontrollers Hardware Manual 1-34

4316E–8051–01/07

The 8051 Instruction Set
1.14.14 DIVAB

Function: Divide

Description: DIV AB divides the unsigned eight-bit integer in the Accumulator by the unsigned eight-bit integer in register B.

The Accumulator receives the integer part of the quotient; register B receives the integer remainder. The carry

and OV flags are cleared.

Exception: if B had originally contained 00H, the values returned in the Accumulator and B-register are

undefined and the overflow flag are set. The carry flag is cleared in any case.

Example: The Accumulator contains 251 (0FBH or 11111011B) and B contains 18 (12H or 00010010B). The following

instruction,

DIV AB

leaves 13 in the Accumulator (0DH or 00001101B) and the value 17 (11H or 00010001B) in B, since

251 = (13 x 18) + 17. Carry and OV are both cleared.

Bytes: 1

Cycles: 4

Encoding: 1 0 0 0 0 1 0 0

Operation: DIV

(A)15-8 ‹ (A)/(B)

(B)7-0
1-35 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

The 8051 Instruction Set
1.14.15 DJNZ<byte>,<rel-
addr>

Function: Decrement and Jump if Not Zero

Description: DJNZ decrements the location indicated by 1, and branches to the address indicated by the second operand if

the resulting value is not zero. An original value of 00H underflows to 0FFH. No flags are affected. The branch

destination is computed by adding the signed relative-displacement value in the last instruction byte to the PC,

after incrementing the PC to the first byte of the following instruction.

The location decremented may be a register or directly addressed byte.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read

from the output data latch, not the input pins.

Example: Internal RAM locations 40H, 50H, and 60H contain the values 01H, 70H, and 15H, respectively. The following

instruction sequence,

DJNZ 40H,LABEL_1

DJNZ 50H,LABEL_2

DJNZ 60H,LABEL_3

causes a jump to the instruction at label LABEL_2 with the values 00H, 6FH, and 15H in the three RAM

locations. The first jump was not taken because the result was zero.

This instruction provides a simple way to execute a program loop a given number of times or for adding a

moderate time delay (from 2 to 512 machine cycles) with a single instruction. The following instruction sequence,

MOV R2, # 8

TOGGLE: CPL P1.7

DJNZ R2,TOGGLE

toggles P1.7 eight times, causing four output pulses to appear at bit 7 of output Port 1. Each pulse lasts three

machine cycles; two for DJNZ and one to alter the pin.

DJNZ Rn,rel

Bytes: 2

Cycles: 2

Encoding: 1 1 0 1 1 r r r rel. address

Operation: DJNZ

(PC) ‹ (PC) + 2

(Rn) ‹ (Rn) - 1

IF (Rn) > 0 or (Rn) < 0

THEN

(PC) ‹ (PC) + rel

DJNZ direct,rel

Bytes: 3

Cycles: 2

Encoding: 1 1 0 1 0 1 0 1 direct address rel. address

Operation: DJNZ

(PC) ‹ (PC) + 2

(direct) ‹ (direct) - 1

IF (direct) > 0 or (direct) < 0

THEN

(PC) ‹ (PC) + rel
Atmel 8051 Microcontrollers Hardware Manual 1-36

4316E–8051–01/07

The 8051 Instruction Set
1.14.16 INC<byte>

Function: Increment

Description: INC increments the indicated variable by 1. An original value of 0FFH overflows to 00H. No flags are affected.

Three addressing modes are allowed: register, direct, or register-indirect.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read

from the output data latch, not the input pins.

Example: Register 0 contains 7EH (011111110B). Internal RAM locations 7EH and 7FH contain 0FFH and 40H,

respectively. The following instruction sequence,

INC @R0

INC R0

INC @R0

leaves register 0 set to 7FH and internal RAM locations 7EH and 7FH holding 00H and 41H, respectively.

INC A

Bytes: 1

Cycles: 1

Encoding: 0 0 0 0 0 1 0 0

Operation: INC

(A) ‹ (A) + 1

INC Rn

Bytes: 1

Cycles: 1

Encoding: 0 0 0 0 1 r r r

Operation: INC

(Rn) ‹ (Rn) + 1

INC direct

Bytes: 2

Cycles: 1

Encoding: 0 0 0 0 0 1 0 1 direct address

Operation: INC

(direct) ‹ (direct) + 1

INC @Ri

Bytes: 1

Cycles: 1

Encoding: 0 0 0 0 0 1 1 i

Operation: INC

((Ri)) ‹ ((Ri)) + 1
1-37 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

The 8051 Instruction Set
1.14.17 INC DPTR

1.14.18 JB blt,rel

Function: Increment Data Pointer

Description: INC DPTR increments the 16-bit data pointer by 1. A 16-bit increment (modulo 216) is performed, and an

overflow of the low-order byte of the data pointer (DPL) from 0FFH to 00H increments the high-order byte (DPH).

No flags are affected.

This is the only 16-bit register which can be incremented.

Example: Registers DPH and DPL contain 12H and 0FEH, respectively. The following instruction sequence,

INC DPTR

INC DPTR

INC DPTR

changes DPH and DPL to 13H and 01H.

Bytes: 1

Cycles: 2

Encoding: 1 0 1 0 0 0 1 1

Operation: INC

(DPTR) ‹ (DPTR) + 1

Function: Jump if Bit set

Description: If the indicated bit is a one, JB jump to the address indicated; otherwise, it proceeds with the next instruction.

The branch destination is computed by adding the signed relative-displacement in the third instruction byte to the

PC, after incrementing the PC to the first byte of the next instruction. The bit tested is not modified. No flags are

affected.

Example: The data present at input port 1 is 11001010B. The Accumulator holds 56 (01010110B). The following instruction

sequence,

JB P1.2,LABEL1

JB ACC. 2,LABEL2

causes program execution to branch to the instruction at label LABEL2.

Bytes: 3

Cycles: 2

Encoding: 0 0 1 0 0 0 0 0 bit address rel. address

Operation: JB

(PC) ‹ (PC) + 3

IF (bit) = 1

THEN

(PC) ‹ (PC) + rel
Atmel 8051 Microcontrollers Hardware Manual 1-38

4316E–8051–01/07

The 8051 Instruction Set
1.14.19 JBC bit,rel

1.14.20 JC rel

Function: Jump if Bit is set and Clear bit

Description: If the indicated bit is one, JBC branches to the address indicated; otherwise, it proceeds with the next instruction.

The bit will not be cleared if it is already a zero. The branch destination is computed by adding the signed

relative-displacement in the third instruction byte to the PC, after incrementing the PC to the first byte of the next

instruction. No flags are affected.

Note: When this instruction is used to test an output pin, the value used as the original data will be read from the

output data latch, not the input pin.

Example: The Accumulator holds 56H (01010110B). The following instruction sequence,

JBC ACC.3,LABEL1

JBC ACC.2,LABEL2

causes program execution to continue at the instruction identified by the label LABEL2, with the Accumulator

modified to 52H (01010010B).

Bytes: 3

Cycles: 2

Encoding: 0 0 0 1 0 0 0 0 bit address rel. address

Operation: JBC

(PC) ‹ (PC) + 3

IF (bit) = 1

THEN

(bit) ‹ 0

(PC) ‹ (PC) +rel

Function: Jump if Carry is set

Description: If the carry flag is set, JC branches to the address indicated; otherwise, it proceeds with the next instruction. The

branch destination is computed by adding the signed relative-displacement in the second instruction byte to the

PC, after incrementing the PC twice. No flags are affected.

Example: The carry flag is cleared. The following instruction sequence,

JC LABEL1

CPL C

 JC LABEL 2

sets the carry and causes program execution to continue at the instruction identified by the label LABEL2.

Bytes: 2

Cycles: 2

Encoding: 0 1 0 0 0 0 0 0 rel. address

Operation: JC

(PC) ‹ (PC) + 2

IF (C) = 1

THEN

(PC) ‹ (PC) + rel
1-39 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

The 8051 Instruction Set
1.14.21 JMP @A+DPTR

1.14.22 JNB bit,rel

Function: Jump indirect

Description: JMP @A+DPTR adds the eight-bit unsigned contents of the Accumulator with the 16-bit data pointer and loads

the resulting sum to the program counter. This is the address for subsequent instruction fetches. Sixteen-bit

addition is performed (modulo 216): a carry-out from the low-order eight bits propagates through the higher-order

bits. Neither the Accumulator nor the Data Pointer is altered. No flags are affected.

Example: An even number from 0 to 6 is in the Accumulator. The following sequence of instructions branches to one of

four AJMP instructions in a jump table starting at JMP_TBL.

MOV DPTR, # JMP_TBL

JMP @A + DPTR

JMP_TBL: AJMP LABEL0

AJMP LABEL1

AJMP LABEL2

AJMP LABEL3

If the Accumulator equals 04H when starting this sequence, execution jumps to label LABEL2. Because AJMP is

a 2-byte instruction, the jump instructions start at every other address.

Bytes: 1

Cycles: 2

Encoding: 0 1 1 1 0 0 1 1

Operation: JMP

(PC) ‹ (A) + (DPTR)

Function: Jump if Bit Not set

Description: If the indicated bit is a 0, JNB branches to the indicated address; otherwise, it proceeds with the next instruction.

The branch destination is computed by adding the signed relative-displacement in the third instruction byte to the

PC, after incrementing the PC to the first byte of the next instruction. The bit tested is not modified. No flags are

affected.

Example: The data present at input port 1 is 11001010B. The Accumulator holds 56H (01010110B). The following

instruction sequence,

JNB P1.3,LABEL1

JNB ACC.3,LABEL2

causes program execution to continue at the instruction at label LABEL2.

Bytes: 3

Cycles: 2

Encoding: 0 0 1 1 0 0 0 0 bit address rel. address

Operation: JNB

(PC) ‹ (PC) + 3

IF (bit) = 0

THEN (PC) ‹ (PC) + rel
Atmel 8051 Microcontrollers Hardware Manual 1-40

4316E–8051–01/07

The 8051 Instruction Set
1.14.23 JNC rel

1.14.24 JNZ rel

Function: Jump if Carry not set

Description: If the carry flag is a 0, JNC branches to the address indicated; otherwise, it proceeds with the next instruction.

The branch destination is computed by adding the signal relative-displacement in the second instruction byte to

the PC, after incrementing the PC twice to point to the next instruction. The carry flag is not modified.

Example: The carry flag is set. The following instruction sequence,

JNC LABEL1

CPL C

JNC LABEL2

clears the carry and causes program execution to continue at the instruction identified by the label LABEL2.

Bytes: 2

Cycles: 2

Encoding: 0 1 0 1 0 0 0 0 rel. address

Operation: JNC

(PC) ‹ (PC) + 2

IF (C) = 0

THEN (PC) ‹ (PC) + rel

Function: Jump if Accumulator Not Zero

Description: If any bit of the Accumulator is a one, JNZ branches to the indicated address; otherwise, it proceeds with the

next instruction. The branch destination is computed by adding the signed relative-displacement in the second

instruction byte to the PC, after incrementing the PC twice. The Accumulator is not modified. No flags are

affected.

Example: The Accumulator originally holds 00H. The following instruction sequence,

JNZ LABEL1

INC A

JNZ LABEL2

sets the Accumulator to 01H and continues at label LABEL2.

Bytes: 2

Cycles: 2

Encoding: 0 1 1 1 0 0 0 0 rel. address

Operation: JNZ

(PC) ‹ (PC) + 2

IF (A) „ 0

THEN (PC) ‹ (PC) + rel
1-41 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

The 8051 Instruction Set
1.14.25 JZ rel

1.14.26 LCALLaddr16

Function: Jump if Accumulator Zero

Description: If all bits of the Accumulator are 0, JZ branches to the address indicated; otherwise, it proceeds with the next

instruction. The branch destination is computed by adding the signed relative-displacement in the second

instruction byte to the PC, after incrementing the PC twice. The Accumulator is not modified. No flags are

affected.

Example: The Accumulator originally contains 01H. The following instruction sequence,

JZ LABEL1

DEC A

JZ LABEL2

changes the Accumulator to 00H and causes program execution to continue at the instruction identified by the

label LABEL2.

Bytes: 2

Cycles: 2

Encoding: 0 1 1 0 0 0 0 0 rel. address

Operation: JZ

(PC) ‹ (PC) + 2

IF (A) = 0

THEN (PC) ‹ (PC) + rel

Function: Long call

Description: LCALL calls a subroutine located at the indicated address. The instruction adds three to the program counter to

generate the address of the next instruction and then pushes the 16-bit result onto the stack (low byte first),

incrementing the Stack Pointer by two. The high-order and low-order bytes of the PC are then loaded,

respectively, with the second and third bytes of the LCALL instruction. Program execution continues with the

instruction at this address. The subroutine may therefore begin anywhere in the full 64K byte program memory

address space. No flags are affected.

Example: Initially the Stack Pointer equals 07H. The label SUBRTN is assigned to program memory location 1234H. After

executing the instruction,

LCALL SUBRTN

at location 0123H, the Stack Pointer will contain 09H, internal RAM locations 08H and 09H will contain 26H and

01H, and the PC will contain 1234H.

Bytes: 3

Cycles: 2

Encoding: 0 0 0 1 0 0 1 0 addr15-addr8 addr7-addr0

Operation: LCALL

(PC) ‹ (PC) + 3

(SP) ‹ (SP) + 1

((SP)) ‹ (PC7-0)

(SP) ‹ (SP) + 1

((SP)) ‹ (PC15-8)

(PC) ‹ addr15-0
Atmel 8051 Microcontrollers Hardware Manual 1-42

4316E–8051–01/07

The 8051 Instruction Set
1.14.27 LJMPaddr16

1.14.28 MOV <dest-
byte>,<src-byte>

Function: Long Jump

Description: LJMP causes an unconditional branch to the indicated address, by loading the high-order and low-order bytes of

the PC (respectively) with the second and third instruction bytes. The destination may therefore be anywhere in

the full 64K program memory address space. No flags are affected.

Example: The label JMPADR is assigned to the instruction at program memory location 1234H. The instruction,

LJMP JMPADR

at location 0123H will load the program counter with 1234H.

Bytes: 3

Cycles: 2

Encoding: 0 0 0 0 0 0 1 0 addr15-addr8 addr7-addr0

Operation: LJMP

(PC) ‹ addr15-0

Function: Move byte variable

Description: The byte variable indicated by the second operand is copied into the location specified by the first operand. The

source byte is not affected. No other register or flag is affected.

This is by far the most flexible operation. Fifteen combinations of source and destination addressing modes are

allowed.

Example: Internal RAM location 30H holds 40H. The value of RAM location 40H is 10H. The data present at input port 1 is

11001010B (0CAH).

MOV R0,#30H ;R0 < = 30H

MOV A,@R0 ;A < = 40H

MOV R1,A ;R1 < = 40H

MOV B,@R1 ;B < = 10H

MOV @R1,P1 ;RAM (40H) < = 0CAH

MOV P2,P1 ;P2 #0CAH

leaves the value 30H in register 0, 40H in both the Accumulator and register 1, 10H in register B, and 0CAH

(11001010B) both in RAM location 40H and output on port 2.

MOV A,Rn

Bytes: 1

Cycles: 1

Encoding: 1 1 1 0 1 r r r

Operation: MOV

(A) ‹ (Rn)
1-43 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

The 8051 Instruction Set
*MOV A,direct

Bytes: 2

Cycles: 1

Encoding: 1 1 1 0 0 1 0 1 direct address

Operation: MOV

(A) ‹ (direct)

* MOV A,ACC is not a valid Instruction.

MOV A,@Ri

Bytes: 1

Cycles: 1

Encoding: 1 1 1 0 0 1 1 i

Operation: MOV

(A) ‹ ((Ri))

MOV A,#data

Bytes: 2

Cycles: 1

Encoding: 0 1 1 1 0 1 0 0 immediate data

Operation: MOV

(A) ‹ #data

MOV Rn,A

Bytes: 1

Cycles: 1

Encoding: 1 1 1 1 1 r r r

Operation: MOV

(Rn) ‹ (A)

MOV Rn,direct

Bytes: 2

Cycles: 2

Encoding: 1 0 1 0 1 r r r direct addr.

Operation: MOV

(Rn) ‹ (direct)

MOV Rn,#data

Bytes: 2

Cycles: 1

Encoding: 0 1 1 1 1 r r r immediate data

Operation: MOV

(Rn) ‹ #data
Atmel 8051 Microcontrollers Hardware Manual 1-44

4316E–8051–01/07

The 8051 Instruction Set
MOV direct,A

Bytes: 2

Cycles: 1

Encoding: 1 1 1 1 0 1 0 1 direct address

Operation: MOV

(direct) ‹ (A)

MOV direct,Rn

Bytes: 2

Cycles: 2

Encoding: 1 0 0 0 1 r r r direct address

Operation: MOV

(direct) ‹ (Rn)

MOV direct,direct

Bytes: 3

Cycles: 2

Encoding: 1 0 0 0 0 1 0 1 dir. addr. (scr) dir. addr. (dest)

Operation: MOV

(direct) ‹ (direct)

MOV direct,@Ri

Bytes: 2

Cycles: 2

Encoding: 1 0 0 0 0 1 1 i direct addr.

Operation: MOV

(direct) ‹ ((Ri))

MOV direct,#data

Bytes: 3

Cycles: 2

Encoding: 0 1 1 1 0 1 0 1 direct address immediate data

Operation: MOV

(direct) ‹ #data

MOV @Ri,A

Bytes: 1

Cycles: 1

Encoding: 1 1 1 1 0 1 1 i

Operation: MOV

((Ri)) ‹ (A)
1-45 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

The 8051 Instruction Set
1.14.29 MOV <dest-
bit>,<src-bit>

MOV @Ri,direct

Bytes: 2

Cycles: 2

Encoding: 1 0 1 0 0 1 1 i direct addr.

Operation: MOV

((Ri)) ‹ (direct)

MOV @Ri,#data

Bytes: 2

Cycles: 1

Encoding: 0 1 1 1 0 1 1 i immediate data

Operation: MOV

((Ri)) ‹ #data

Function: Move bit data

Description: MOV <dest-bit>,<src-bit> copies the Boolean variable indicated by the second operand into the location

specified by the first operand. One of the operands must be the carry flag; the other may be any directly

addressable bit. No other register or flag is affected.

Example: The carry flag is originally set. The data present at input Port 3 is 11000101B. The data previously written to

output Port 1 is 35H (00110101B).

MOV P1.3,C

MOV C,P3.3

MOV P1.2,C

leaves the carry cleared and changes Port 1 to 39H (00111001B).

MOV C,bit

Bytes: 2

Cycles: 1

Encoding: 1 0 1 0 0 0 1 0 bit address

Operation: MOV

(C) ‹ (bit)

MOV bit,C

Bytes: 2

Cycles: 2

Encoding: 1 0 0 1 0 0 1 0 bit address

Operation: MOV

(bit) ‹ (C)
Atmel 8051 Microcontrollers Hardware Manual 1-46

4316E–8051–01/07

The 8051 Instruction Set
1.14.30 MOV DPTR,#data16

1.14.31 MOVC A,@A+
<base-reg>

Function: Load Data Pointer with a 16-bit constant

Description: MOV DPTR,#data16 loads the Data Pointer with the 16-bit constant indicated. The 16-bit constant is loaded into

the second and third bytes of the instruction. The second byte (DPH) is the high-order byte, while the third byte

(DPL) holds the lower-order byte. No flags are affected.

This is the only instruction which moves 16 bits of data at once.

Example: The instruction,

MOV DPTR, # 1234H

loads the value 1234H into the Data Pointer: DPH holds 12H, and DPL holds 34H.

Bytes: 3

Cycles: 2

Encoding: 1 0 0 1 0 0 0 0 immed. data15-8 immed. data7-0

Operation: MOV

(DPTR) ‹ #data15-0

DPH ‹ DPL ‹ #data15-8 ‹ #data7-0

Function: Move Code byte

Description: The MOVC instructions load the Accumulator with a code byte or constant from program memory. The address

of the byte fetched is the sum of the original unsigned 8-bit Accumulator contents and the contents of a 16-bit

base register, which may be either the Data Pointer or the PC. In the latter case, the PC is incremented to the

address of the following instruction before being added with the Accumulator; otherwise the base register is not

altered. Sixteen-bit addition is performed so a carry-out from the low-order eight bits may propagate through

higher-order bits. No flags are affected.

Example: A value between 0 and 3 is in the Accumulator. The following instructions will translate the value in the

Accumulator to one of four values defined by the DB (define byte) directive.

REL_PC: INC A

MOVC A,@A+PC

RET

DB 66H

DB 77H

DB 88H

DB 99H

If the subroutine is called with the Accumulator equal to 01H, it returns with 77H in the Accumulator. The INC A

before the MOVC instruction is needed to “get around” the RET instruction above the table. If several bytes of

code separate the MOVC from the table, the corresponding number is added to the Accumulator instead.
1-47 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

The 8051 Instruction Set
1.14.32 MOVX <dest-
byte>,<src-byte>

MOVC A,@A+DPTR

Bytes: 1

Cycles: 2

Encoding: 1 0 0 1 0 0 1 1

Operation: MOVC

(A) ‹ ((A) + (DPTR))

MOVC A,@A+PC

Bytes: 1

Cycles: 2

Encoding: 1 0 0 0 0 0 1 1

Operation: MOVC

(PC) ‹ (PC) + 1

(A) ‹ ((A) + (PC))

Function: Move External

Description: The MOVX instructions transfer data between the Accumulator and a byte of external data memory, which is why

“X” is appended to MOV. There are two types of instructions, differing in whether they provide an 8-bit or 16-bit

indirect address to the external data RAM.

In the first type, the contents of R0 or R1 in the current register bank provide an 8-bit address multiplexed with

data on P0. Eight bits are sufficient for external I/O expansion decoding or for a relatively small RAM array. For

somewhat larger arrays, any output port pins can be used to output higher-order address bits. These pins are

controlled by an output instruction preceding the MOVX.

In the second type of MOVX instruction, the Data Pointer generates a 16-bit address. P2 outputs the high-order

eight address bits (the contents of DPH), while P0 multiplexes the low-order eight bits (DPL) with data. The P2

Special Function Register retains its previous contents, while the P2 output buffers emit the contents of DPH.

This form of MOVX is faster and more efficient when accessing very large data arrays (up to 64K bytes), since

no additional instructions are needed to set up the output ports.

It is possible to use both MOVX types in some situations. A large RAM array with its high-order address lines

driven by P2 can be addressed via the Data Pointer, or with code to output high-order address bits to P2,

followed by a MOVX instruction using R0 or R1.

Example: An external 256 byte RAM using multiplexed address/data lines is connected to the 8051 Port 0. Port 3 provides

control lines for the external RAM. Ports 1 and 2 are used for normal I/O. Registers 0 and 1 contain 12H and

34H. Location 34H of the external RAM holds the value 56H. The instruction sequence,

MOVX A,@R1

MOVX @R0,A

copies the value 56H into both the Accumulator and external RAM location 12H.

MOVX A,@Ri

Bytes: 1

Cycles: 2

Encoding: 1 1 1 0 0 0 1 i
Atmel 8051 Microcontrollers Hardware Manual 1-48

4316E–8051–01/07

The 8051 Instruction Set
1.14.33 MUL AB

Operation: MOVX

(A) ‹ ((Ri))

MOVX A,@DPTR

Bytes: 1

Cycles: 2

Encoding: 1 1 1 0 0 0 0 0

Operation: MOVX

(A) ‹ ((DPTR))

MOVX @Ri,A

Bytes: 1

Cycles: 2

Encoding: 1 1 1 1 0 0 1 i

Operation: MOVX

((Ri)) ‹ (A)

MOVX @DPTR,A

Bytes: 1

Cycles: 2

Encoding: 1 1 1 1 0 0 0 0

Operation: MOVX

(DPTR) ‹ (A)

Function: Multiply

Description: MUL AB multiplies the unsigned 8-bit integers in the Accumulator and register B. The low-order byte of the 16-bit

product is left in the Accumulator, and the high-order byte in B. If the product is greater than 255 (0FFH), the

overflow flag is set; otherwise it is cleared. The carry flag is always cleared.

Example: Originally the Accumulator holds the value 80 (50H). Register B holds the value 160 (0A0H). The instruction,

MUL AB

will give the product 12,800 (3200H), so B is changed to 32H (00110010B) and the Accumulator is cleared. The

overflow flag is set, carry is cleared.

Bytes: 1

Cycles: 4

Encoding: 1 0 1 0 0 1 0 0

Operation: MUL

(A)7-0 ‹ (A) X (B)

(B)15-8
1-49 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

The 8051 Instruction Set
1.14.34 NOP

Function: No Operation

Description: Execution continues at the following instruction. Other than the PC, no registers or flags are affected.

Example: A low-going output pulse on bit 7 of Port 2 must last exactly 5 cycles. A simple SETB/CLR sequence generates

a one-cycle pulse, so four additional cycles must be inserted. This may be done (assuming no interrupts are

enabled) with the following instruction sequence,

CLR P2.7

NOP

NOP

NOP

NOP

SETB P2.7

Bytes: 1

Cycles: 1

Encoding: 0 0 0 0 0 0 0 0

Operation: NOP

(PC) ‹ (PC) + 1
Atmel 8051 Microcontrollers Hardware Manual 1-50

4316E–8051–01/07

The 8051 Instruction Set
1.14.35 ORL<dest-byte>
<src-byte>

Function: Logical-OR for byte variables

Description: ORL performs the bitwise logical-OR operation between the indicated variables, storing the results in the

destination byte. No flags are affected.

The two operands allow six addressing mode combinations. When the destination is the Accumulator, the source

can use register, direct, register-indirect, or immediate addressing; when the destination is a direct address, the

source can be the Accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as the original port data is read from

the output data latch, not the input pins.

Example: If the Accumulator holds 0C3H (11000011B) and R0 holds 55H (01010101B) then the following instruction,

ORL A,R0

leaves the Accumulator holding the value 0D7H (1101011lB).When the destination is a directly addressed byte,

the instruction can set combinations of bits in any RAM location or hardware register. The pattern of bits to be set

is determined by a mask byte, which may be either a constant data value in the instruction or a variable

computed in the Accumulator at run-time. The instruction,

ORL P1,#00110010B

sets bits 5, 4, and 1 of output Port 1.

ORL A,Rn

Bytes: 1

Cycles: 1

Encoding: 0 1 0 0 1 r r r

Operation: ORL

(A) ‹ (A) Ú (Rn)

ORL A,direct

Bytes: 2

Cycles: 1

Encoding: 0 1 0 0 0 1 0 1 direct address

Operation: ORL

(A) ‹ (A) Ú (direct)

ORL A,@Ri

Bytes: 1

Cycles: 1

Encoding: 0 1 0 0 0 1 1 i

Operation: ORL

(A) ‹ (A) Ú((Ri))
1-51 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

The 8051 Instruction Set
1.14.36 ORL C,<src-bit>

ORL A,#data

Bytes: 2

Cycles: 1

Encoding: 0 1 0 0 0 1 0 0 immediate data

Operation: ORL

(A) ‹ (A) Ú #data

ORL direct,A

Bytes: 2

Cycles: 1

Encoding: 0 1 0 0 0 0 1 0 direct address

Operation: ORL

(direct) ‹ (direct) Ú (A)

ORL direct,#data

Bytes: 3

Cycles: 2

Encoding: 0 1 0 0 0 0 1 1 direct addr. immediate data

Operation: ORL

(direct) ‹ (direct) Ú #data

Function: Logical-OR for bit variables

Description: Set the carry flag if the Boolean value is a logical 1; leave the carry in its current state otherwise. A slash (/)

preceding the operand in the assembly language indicates that the logical complement of the addressed bit is

used as the source value, but the source bit itself is not affected. No other flags are affected.

Example: Set the carry flag if and only if P1.0 = 1, ACC. 7 = 1, or OV = 0:

MOV C,P1.0 ;LOAD CARRY WITH INPUT PIN P10

ORL C,ACC.7 ;OR CARRY WITH THE ACC. BIT 7

ORL C,/OV ;OR CARRY WITH THE INVERSE OF OV.

ORL C,bit

Bytes: 2

Cycles: 2

Encoding: 0 1 1 1 0 0 1 0 bit address

Operation: ORL

(C) ‹ (C) Ú (bit)

ORL C,/bit

Bytes: 2
Atmel 8051 Microcontrollers Hardware Manual 1-52

4316E–8051–01/07

The 8051 Instruction Set
Cycles: 2

Encoding: 1 0 1 0 0 0 0 0 bit address

Operation: ORL

(C) ‹ (C) Ú (bit)
1-53 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

The 8051 Instruction Set
1.14.37 POP direct

1.14.38 PUSH direct

Function: Pop from stack.

Description: The contents of the internal RAM location addressed by the Stack Pointer is read, and the Stack Pointer is

decremented by one. The value read is then transferred to the directly addressed byte indicated. No flags are

affected.

Example: The Stack Pointer originally contains the value 32H, and internal RAM locations 30H through 32H contain the

values 20H, 23H, and 01H, respectively. The following instruction sequence,

POP DPH

POP DPL

leaves the Stack Pointer equal to the value 30H and sets the Data Pointer to 0123H. At this point, the following

instruction,

POP SP

leaves the Stack Pointer set to 20H. In this special case, the Stack Pointer was decremented to 2FH before

being loaded with the value popped (20H).

Bytes: 2

Cycles: 2

Encoding: 1 1 0 1 0 0 0 0 direct address

Operation: POP

(direct) ‹ ((SP))

(SP) ‹ (SP) - 1

Function: Push onto stack

Description: The Stack Pointer is incremented by one. The contents of the indicated variable is then copied into the internal

RAM location addressed by the Stack Pointer. Otherwise no flags are affected.

Example: On entering an interrupt routine, the Stack Pointer contains 09H. The Data Pointer holds the value 0123H. The

following instruction sequence,

PUSH DPL

PUSH DPH

leaves the Stack Pointer set to 0BH and stores 23H and 01H in internal RAM locations 0AH and 0BH,

respectively.

Bytes: 2

Cycles: 2

Encoding: 1 1 0 0 0 0 0 0 direct address

Operation: PUSH

(SP) ‹ (SP) + 1

((SP)) ‹ (direct)
Atmel 8051 Microcontrollers Hardware Manual 1-54

4316E–8051–01/07

The 8051 Instruction Set
1.14.39 RET

1.14.40 RETI

Function: Return from subroutine

Description: RET pops the high- and low-order bytes of the PC successively from the stack, decrementing the Stack Pointer

by two. Program execution continues at the resulting address, generally the instruction immediately following an

ACALL or LCALL. No flags are affected.

Example: The Stack Pointer originally contains the value 0BH. Internal RAM locations 0AH and 0BH contain the values

23H and 01H, respectively. The following instruction,

RET

leaves the Stack Pointer equal to the value 09H. Program execution continues at location 0123H.

Bytes: 1

Cycles: 2

Encoding: 0 0 1 0 0 0 1 0

Operation: RET

(PC15-8) ‹ ((SP))

(SP) ‹ (SP) - 1

(PC7-0) ‹ ((SP))

(SP) ‹ (SP) - 1

Function: Return from interrupt

Description: RETI pops the high- and low-order bytes of the PC successively from the stack and restores the interrupt logic to

accept additional interrupts at the same priority level as the one just processed. The Stack Pointer is left

decremented by two. No other registers are affected; the PSW is not automatically restored to its pre-interrupt

status. Program execution continues at the resulting address, which is generally the instruction immediately after

the point at which the interrupt request was detected. If a lower- or same-level interrupt was pending when the

RETI instruction is executed, that one instruction is executed before the pending interrupt is processed.

Example: The Stack Pointer originally contains the value 0BH. An interrupt was detected during the instruction ending at

location 0122H. Internal RAM locations 0AH and 0BH contain the values 23H and 01H, respectively. The

following instruction,

RETI

leaves the Stack Pointer equal to 09H and returns program execution to location 0123H.

Bytes: 1

Cycles: 2

Encoding: 0 0 1 1 0 0 1 0

Operation: RETI

(PC15-8) ‹ ((SP))

(SP) ‹ (SP) - 1

(PC7-0) ‹ ((SP))

(SP) ‹ (SP) - 1
1-55 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

The 8051 Instruction Set
1.14.41 RL A

1.14.42 RLC A

Function: Rotate Accumulator Left

Description: The eight bits in the Accumulator are rotated one bit to the left. Bit 7 is rotated into the bit 0 position. No flags are

affected.

Example: The Accumulator holds the value 0C5H (11000101B). The following instruction,

RL A

leaves the Accumulator holding the value 8BH (10001011B) with the carry unaffected.

Bytes: 1

Cycles: 1

Encoding: 0 0 1 0 0 0 1 1

Operation: RL

(An + 1) ‹ (An) n = 0 - 6

(A0) ‹ (A7)

Function: Rotate Accumulator Left through the Carry flag

Description: The eight bits in the Accumulator and the carry flag are together rotated one bit to the left. Bit 7 moves into the

carry flag; the original state of the carry flag moves into the bit 0 position. No other flags are affected.

Example: The Accumulator holds the value 0C5H(11000101B), and the carry is zero. The following instruction,

RLC A

leaves the Accumulator holding the value 8BH (10001010B) with the carry set.

Bytes: 1

Cycles: 1

Encoding: 0 0 1 1 0 0 1 1

Operation: RLC

(An + 1) ‹ (An) n = 0 - 6

(A0) ‹ (C)

(C) ‹ (A7)
Atmel 8051 Microcontrollers Hardware Manual 1-56

4316E–8051–01/07

The 8051 Instruction Set
1.14.43 RR A

1.14.44 RRC A

Function: Rotate Accumulator Right

Description: The eight bits in the Accumulator are rotated one bit to the right. Bit 0 is rotated into the bit 7 position. No flags

are affected.

Example: The Accumulator holds the value 0C5H (11000101B). The following instruction,

RR A

leaves the Accumulator holding the value 0E2H (11100010B) with the carry unaffected.

Bytes: 1

Cycles: 1

Encoding: 0 0 0 0 0 0 1 1

Operation: RR

(An) ‹ (An + 1) n = 0 - 6

(A7) ‹ (A0)

Function: Rotate Accumulator Right through Carry flag

Description: The eight bits in the Accumulator and the carry flag are together rotated one bit to the right. Bit 0 moves into the

carry flag; the original value of the carry flag moves into the bit 7 position. No other flags are affected.

Example: The Accumulator holds the value 0C5H (11000101B), the carry is zero. The following instruction,

RRC A

leaves the Accumulator holding the value 62 (01100010B) with the carry set.

Bytes: 1

Cycles: 1

Encoding: 0 0 0 1 0 0 1 1

Operation: RRC

(An) ‹ (An + 1) n = 0 - 6

(A7) ‹ (C)

(C) ‹ (A0)
1-57 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

The 8051 Instruction Set
1.14.45 SETB<bit>

1.14.46 SJMP rel

Function: Set Bit

Description: SETB sets the indicated bit to one. SETB can operate on the carry flag or any directly addressable bit. No other

flags are affected.

Example: The carry flag is cleared. Output Port 1 has been written with the value 34H (00110100B). The following

instructions,

SETB C

SETB P1.0

sets the carry flag to 1 and changes the data output on Port 1 to 35H (00110101B).

SETB C

Bytes: 1

Cycles: 1

Encoding: 1 1 0 1 0 0 1 1

Operation: SETB

(C) ‹ 1

SETB bit

Bytes: 2

Cycles: 1

Encoding: 1 1 0 1 0 0 1 0 bit address

Operation: SETB

(bit) ‹ 1

Function: Short Jump

Description: Program control branches unconditionally to the address indicated. The branch destination is computed by

adding the signed displacement in the second instruction byte to the PC, after incrementing the PC twice.

Therefore, the range of destinations allowed is from 128 bytes preceding this instruction 127 bytes following it.

Example: The label RELADR is assigned to an instruction at program memory location 0123H. The following instruction,

SJMP RELADR

assembles into location 0100H. After the instruction is executed, the PC contains the value 0123H.

Note: Under the above conditions the instruction following SJMP is at 102H. Therefore, the displacement byte of

the instruction is the relative offset (0123H-0102H) = 21H. Put another way, an SJMP with a displacement of

0FEH is a one-instruction infinite loop.

Bytes: 2

Cycles: 2

Encoding: 1 0 0 0 0 0 0 0 rel. address

Operation: SJMP

(PC) ‹ (PC) + 2

(PC) ‹ (PC) + rel
Atmel 8051 Microcontrollers Hardware Manual 1-58

4316E–8051–01/07

The 8051 Instruction Set
1.14.47 SUBB A,<src-byte>

Function: Subtract with borrow

Description: SUBB subtracts the indicated variable and the carry flag together from the Accumulator, leaving the result in the

Accumulator. SUBB sets the carry (borrow) flag if a borrow is needed for bit 7 and clears C otherwise. (If C was

set before executing a SUBB instruction, this indicates that a borrow was needed for the previous step in a

multiple-precision subtraction, so the carry is subtracted from the Accumulator along with the source operand.)

AC is set if a borrow is needed for bit 3 and cleared otherwise. OV is set if a borrow is needed into bit 6, but not

into bit 7, or into bit 7, but not bit 6.

When subtracting signed integers, OV indicates a negative number produced when a negative value is

subtracted from a positive value, or a positive result when a positive number is subtracted from a negative

number.

The source operand allows four addressing modes: register, direct, register-indirect, or immediate.

Example: The Accumulator holds 0C9H (11001001B), register 2 holds 54H (01010100B), and the carry flag is set. The

instruction,

SUBB A,R2

will leave the value 74H (01110100B) in the accumulator, with the carry flag and AC cleared but OV set.

Notice that 0C9H minus 54H is 75H. The difference between this and the above result is due to the carry

(borrow) flag being set before the operation. If the state of the carry is not known before starting a single or

multiple-precision subtraction, it should be explicitly cleared by CLR C instruction.

SUBB A,Rn

Bytes: 1

Cycles: 1

Encoding: 1 0 0 1 1 r r r

Operation: SUBB

(A) ‹ (A) - (C) - (Rn)

SUBB A,direct

Bytes: 2

Cycles: 1

Encoding: 1 0 0 1 0 1 0 1 direct address

Operation: SUBB

(A) ‹ (A) - (C) - (direct)

SUBB A,@Ri

Bytes: 1

Cycles: 1

Encoding: 1 0 0 1 0 1 1 i

Operation: SUBB

(A) ‹ (A) - (C) - ((Ri))
1-59 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

The 8051 Instruction Set
1.14.48 SWAP A

1.14.49 XCH A,<byte>

SUBB A,#data

Bytes: 2

Cycles: 1

Encoding: 1 0 0 1 0 1 0 0 immediate data

Operation: SUBB

(A) ‹ (A) - (C) - #data

Function: Swap nibbles within the Accumulator

Description: SWAP A interchanges the low- and high-order nibbles (four-bit fields) of the Accumulator (bits 3 through 0 and

bits 7 through 4). The operation can also be thought of as a 4-bit rotate instruction. No flags are affected.

Example: The Accumulator holds the value 0C5H (11000101B). The instruction,

SWAP A

leaves the Accumulator holding the value 5CH (01011100B).

Bytes: 1

Cycles: 1

Encoding: 1 1 0 0 0 1 0 0

Operation: SWAP

(A3-0) D (A7-4)

Function: Exchange Accumulator with byte variable

Description: XCH loads the Accumulator with the contents of the indicated variable, at the same time writing the original

Accumulator contents to the indicated variable. The source/destination operand can use register, direct, or

register-indirect addressing.

Example: R0 contains the address 20H. The Accumulator holds the value 3FH (0011111lB). Internal RAM location 20H

holds the value 75H (01110101B). The following instruction,

XCH A,@R0

leaves RAM location 20H holding the values 3FH (00111111B) and 75H (01110101B) in the accumulator.

XCH A,Rn

Bytes: 1

Cycles: 1

Encoding: 1 1 0 0 1 r r r

Operation: XCH

(A) D ((Rn)

XCH A,direct
Atmel 8051 Microcontrollers Hardware Manual 1-60

4316E–8051–01/07

The 8051 Instruction Set
1.14.50 XCHD A,@Ri

Bytes: 2

Cycles: 1

Encoding: 1 1 0 0 0 1 0 1 direct address

Operation: XCH

(A) D (direct)

XCH A,@Ri

Bytes: 1

Cycles: 1

Encoding: 1 1 0 0 0 1 1 i

Operation: XCH

(A) D ((Ri))

Function: Exchange Digit

Description: XCHD exchanges the low-order nibble of the Accumulator (bits 3 through 0), generally representing a

hexadecimal or BCD digit, with that of the internal RAM location indirectly addressed by the specified register.

The high-order nibbles (bits 7-4) of each register are not affected. No flags are affected.

Example: R0 contains the address 20H. The Accumulator holds the value 36H (00110110B). Internal RAM location 20H

holds the value 75H (01110101B). The following instruction,

XCHD A,@R0

leaves RAM location 20H holding the value 76H (01110110B) and 35H (00110101B) in the Accumulator.

Bytes: 1

Cycles: 1

Encoding: 1 1 0 1 0 1 1 i

Operation: XCHD

(A3-0) D ((Ri3-0))
1-61 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

The 8051 Instruction Set
1.14.51 XRL <dest-
byte>,<src-byte>

Function: Logical Exclusive-OR for byte variables

Description: XRL performs the bitwise logical Exclusive-OR operation between the indicated variables, storing the results in

the destination. No flags are affected.

The two operands allow six addressing mode combinations. When the destination is the Accumulator, the source

can use register, direct, register-indirect, or immediate addressing; when the destination is a direct address, the

source can be the Accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as the original port data is read from

the output data latch, not the input pins.

Example: If the Accumulator holds 0C3H (1100001lB) and register 0 holds 0AAH (10101010B) then the instruction,

XRL A,R0

leaves the Accumulator holding the value 69H (01101001B).

When the destination is a directly addressed byte, this instruction can complement combinations of bits in any

RAM location or hardware register. The pattern of bits to be complemented is then determined by a mask byte,

either a constant contained in the instruction or a variable computed in the Accumulator at run-time. The

following instruction,

XRL P1,#00110001B

complements bits 5, 4, and 0 of output Port 1.

XRL A,Rn

Bytes: 1

Cycles: 1

Encoding: 0 1 1 0 1 r r r

Operation: XRL

(A) ‹ (A) V (Rn)

XRL A,direct

Bytes: 2

Cycles: 1

Encoding: 0 1 1 0 0 1 0 1 direct address

Operation: XRL

(A) ‹ (A) V (direct)

XRL A,@Ri

Bytes: 1

Cycles: 1

Encoding: 0 1 1 0 0 1 1 i

Operation: XRL

(A) ‹ (A) V (Ri)
Atmel 8051 Microcontrollers Hardware Manual 1-62

4316E–8051–01/07

The 8051 Instruction Set
XRL A,@#data

Bytes: 2

Cycles: 1

Encoding: 0 1 1 0 0 1 0 0 immediate data

Operation: XRL

(A) ‹ (A) V #data

XRL direct,A

Bytes: 2

Cycles: 1

Encoding: 0 1 1 0 0 0 1 0 direct address

Operation: XRL

(direct) ‹ (direct) V (A)

XRL
direct,#data

Bytes: 3

Cycles: 2

Encoding: 0 1 1 0 0 0 1 1 direct address immediate data

Operation: XRL

(direct) ‹ (direct) V #data
1-63 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

Section 2

Common Features Description

2.1 Introduction This chapter presents a comprehensive description of the on-chip hardware features of

the Atmel 8051 microcontrollers. Included in this description are:

� The port drivers and how they function both as ports and, for Ports 0 and 2, in bus

operations

� The Timer/Counters

� The serial Interface

� The Interrupt System

� Reset

� The reduced Power Modes
Atmel 8051 Microcontrollers Hardware Manual 2-66

Rev. 4316E–8051–01/07

Common Features Description
Figure 2-1. 8051 Architecture Block Diagram

Note: (*)For Timer 2 only.

Figure 2-1 shows a functional block diagram of the 80C51s.
2-67 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

Common Features Description
2.2 Special Function
Registers

A map of the on-chip memory area called SFR (Special Function Register) space is

shown in Figure 2-1. SFRs marked by parentheses are resident in the microcontroller

which have the Timer2 feature.Note that not all of the addresses are occupied. Read

accesses to these addresses will in general return random data.

Note: Reserved

User software should not write to the reserved locations, since they may be used in

derivative Atmel 8051 products to invoke new features. The functions of the SFRs are

described as below.

2.2.1 Accumulator ACC is the Accumulator register. The mnemonics for accumulator-specific instructions,

however, refer to the accumulator simply as A.

2.2.2 B Register The B register is used during multiply and divide operations. For other instructions it can

be treated as another scratch pad register.

Bit

Addressable

8 Bytes

Non-bit Addressable

F8h FFh

F0h B F7h

E8h EFh

E0h ACC E7h

D8h DFh

D0h PSW D7h

C8h (T2CON) (RCAP2L) (RCAP2H) (TL2) (TH2) CFh

C0h C7h

B8h IP BFh

B0h P3 B7h

A8h IE AFh

A0h P2 A7h

98h SCON SBUF 9Fh

90h P1 97h

88h TCON TMOD TL0 TL1 TH0 TH1 AUXR CKCON 8Fh

80h P0 SP DPL DPH PCON 87h

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F
Atmel 8051 Microcontrollers Hardware Manual 2-68

4316E–8051–01/07

Common Features Description
2.2.3 Program Status
Word

The PSW register contains program status information as detailed in Table 2-1.

Table 2-1. PSW: Program Status Word Register

2.2.4 Stack Pointer The Stack Pointer register is 8 bits wide. It is incremented before data is stored during

PUSH and CALL executions. While the stack may reside anywhere in on-chip RAM, the

Stack Pointer is initialized to 07H after a reset. This causes the stack to begin at location

08H.

2.2.5 Data Pointer The Data Pointer (DPTR) consists of a high byte (DPH) and a low byte (DPL). Its

intended function is to hold a 16-bit address. It may be manipulated as a 16-bit register

or as two independent 8-bit registers.

2.2.6 Ports 0 to 3 P0, P1, P2 and P3 are the SFR latches of Ports 0, 1, 2 and 3, respectively.

2.2.7 Serial Data Buffer The Serial Data Buffer is actually two separate registers, a transmit buffer and a receive

buffer register. When data is moved to SBUF, it goes to the transmit buffer where it is

held for serial transmission. (Moving a byte to SBUF is what initiates the transmission.)

When data is moved from SBUF, it comes from the receive buffer.

2.2.8 Timer Registers Register pairs (TH0, TL0), (TH1, TL1), and (TH2, TL2) are the 16-bit counting registers

for Timer/Counters 0, 1, and 2, respectively.

2.2.9 Capture Registers The register pair (RCAP2H, RCAP2L) are the capture register for the Timer 2 ‘capture

mode’. In this mode, in response to a transition at the 80C52’s T2EX pin, TH2 and TL2

are copied into RCAP2H and RCAP2L. Timer 2 also has a 16-bit auto-reload mode, and

(MSB) (LSB)

CY AC F0 RS1 RS0 OV - P

Symbol Position Name and Significance

CY PSW.7 Carry flag

AC PSW.6
Auxiliary Carry flag.

(For BCD operations.)

F0 PSW.5
Flag 0

(Available to the user for general purposes.)

RS1 PSW.4

Register bank Select control bits 1 & 0. Set/cleared

by software to determine working register bank (see

Note).

RS0 PSW.3

OV PSW.2 Overflow flag.

- PSW.1 (reserved)

P PSW.0

Parity flag.

Set/cleared by hardware each instruction cycle to

indicate and odd/even number of “one” bits in the

accumulator, i.e., even parity.

Note: The contents of (RS1, RS0) enable the working register banks as follows

(0.0)-Bank 0(00H-07H)

(0.1)-Bank 1(08H-0FH)

(1.0)-Bank 2(10H-17H)

(1.1)-Bank 3(18H-1FH)
2-69 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

Common Features Description
RCAP2H and RCAP2L hold the reload value for this mode. More about Timer 2’s fea-

tures in Section 1.6.

2.2.10 Control Registers Special Function Registers IP, IE, TMOD, TCON, T2CON, SCON, and PCON contain

control and status bits for the interrupt system, the timer/counters, and the serial port.

They are described in later sections.

2.3 Oscillator and
Clock Circuit

XTAL1 and XTAL2 are the input and output of a single-stage on-chip inverter, which can

be configured with off-chip components as a Pierce oscillator, as shown in Figure 2-2.

The on-chip circuitry, and selection of off-chip components to configure the oscillator are

discussed in Section 1.12.

Figure 2-2. Crystal/Ceramic Resonator Oscillator

The oscillator, in any case, drives the internal clock generator. The clock generator pro-

vides the internal clocking signals to the chip. The internal clocking signals are at half

the oscillator frequency, and define the internal phases, states, and machine cycles,

which are described in the next section.

2.3.1 More about the On-
chip Oscillator

This section not yet available.
Atmel 8051 Microcontrollers Hardware Manual 2-70

4316E–8051–01/07

Common Features Description
2.4 CPU Timing

2.4.1 X1 Mode (Standard
Mode)

A machine cycle consists of 6 states (12 oscillator periods). Each state is divided into a

Phase 1 half, during which the Phase 1 clock is active, and a Phase 2 half, during which

the Phase 2 clock is active. Thus, a machine cycle consists of 12 oscillator periods,

numbered S1P1 (State 1, Phase 1), through S6P2 (State 6, Phase 2). Each phase lasts

for one oscillator period. Each state lasts for two oscillator periods. Typically, arithmetic

and logical operations take place during Phase 1 and internal register-to-register trans-

fers take place during Phase 2.

The diagrams in Figure 2-3 show the fetch/execute timing referenced to the internal

states and phases. Since these internal clock signals are not user accessible, the

XTAL2 oscillator signal and the ALE (Address Latch Enable) signal are shown for exter-

nal reference. ALE is normally activated twice during each machine cycle: once during

S1P2 and S2P1, and again during S4P2 and S5P1.

Execution of one-cycle instruction begins at S1P2, when the opcode is latched into the

Instruction Register. If it is a two-byte instruction, the second byte is read during S4 of

the same machine cycle. If it is one-byte instruction, there is still a fetch at S4, but the

byte read (which would be the next opcode), is ignored, and the Program Counter is not

incremented. In any case, execution is complete at the end of S6P2. Figure 2-3A and

Figure 2-3B show the timing for a 1-byte, 1-cycle instruction and for a 2-byte, 1-cycle

instruction.

Most 80C51 instructions execute in one cycle. MUL (multiply) and DIV (divide) are the

only instructions that take more than two cycles to complete. They take four cycles.

Separately, two codes bytes are fetched from Program Memory during every machine

cycle. The only exception to this is when a MOVX instruction is executed. MOVX is a 1-

byte 2-cycle instruction that accesses external Data Memory. During a MOVX, two

fetches are skipped while the external Data Memory is being addressed and strobed.

Figure 2-3C and Figure 2-3D show the timing for a normal 1-byte, 2-cycle instruction

and for a MOVX instruction.
2-71 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

Common Features Description
Figure 2-3. 80C51 Fetch/Execute Sequences.

2.4.2 X2 Mode This section not yet available.
Atmel 8051 Microcontrollers Hardware Manual 2-72

4316E–8051–01/07

Common Features Description
2.5 Port Structures
and Operation

All four ports in the 80C51 are bidirectional. Each consists of a latch (Special Function

Register P0 through P3), an output driver, and an input buffer.

The output drivers of Ports 0 and 2, and input buffers of Port 0, are used in accesses to

external memory. In this application, Port 0 outputs the low byte of the external memory

address, time-multiplexed with the byte being written or read. Port 2 outputs the high

byte of the external memory address when the address is 16 bits wide. Otherwise the

Port 2 pins continue to emit the P2 SFR content.

All the Port 3 pins, and (in the case of Timer2) two Port 1 pins are multifunctional. They

are not only port pins, but also serve the functions of various special features as listed

below:

The alternate functions can only be activated if the corresponding bit latch in the port

SFR contains a 1. Otherwise the port pin is stuck at 0.

2.5.1 I/O Configurations Figure 2-4 shows a functional diagram of a typical bit latch and I/O buffer in each of the

four ports. The bit latch (one bit in the port’s SFR) is represented as a Type D flip-flop,

which will clock in a value from the internal bus in response to a “write to latch” signal

from the CPU. The Q output of the flip-flop is placed on the internal bus in response to a

“read latch” signal from the CPU. The level of the port pin itself is placed on the internal

bus in response to a “read pin” signal from the CPU. Some instructions that read a port

activate the “read latch” signal, and others activate the “read latch” signal, and others

activate the “read pin” signal.

Port Pin Alternate Function

(1)P1.0
(1)P1.1

P3.0

P3.1

P3.2

P3.3

P3.4

P3.5

P3.6

P3.7

T2 (Timer/Counter 2 external input) (If Timer 2 available)

T2EX (Timer/Counter 2 capture/reload trigger) (If Timer 2 available)

RXD (serial input port)

TXD (serial output port)

INT0 (external interrupt)

INT1 (external interrupt)

T0 (Timer/Counter 0 external input)

T1 (Timer/Counter 1 external input)

WR (external Data memory write strobe)

RD (external Data memory read strobe)
2-73 Atmel 8051 Microcontrollers Hardware Manual

4316E–8051–01/07

Common Features Description
Figure 2-4. 80C51 Port Bit Latches and I/O Buffers.

As shown in Figure 2-4, the output drivers of Ports 0 and 2 are switchable to an internal
ADDR and ADDR/DATA bus by an internal CONTROL signal for use in external mem-
ory accesses. During external memory accesses, the P2 SFR remains unchanged, but
the P0 SFR gets 1s written to it.

Also shown in Figure 2-4, is that if a P3 bit latch contains a 1, then the output level is
controlled by the signal labeled “alternate output function.” The actual P3.X pin level is
always available to the pin’s alternate input function, if any.

Ports 1, 2, and 3 have internal pull-ups. Ports 0 has open-drain outputs. Each I/O line
can be independently used as an input or an output. (Ports 0 and 2 may not be used as
general purpose I/O when being used as the ADDR/DATA BUS). To be used as an
input, the port bit latch must contain a 1, which turns off the output driver FET. Then, for
Ports 1, 2, and 3, the pin is pulled high by the internal pull-up, but can be pulled low by
an external source.

Port 0 differs in not having internal pull-ups. The pull-up FET in the P0 output driver (see
Figure 2-4A) is used only when the Port is emitting 1’s during external memory
accesses. Otherwise the pull-up FET is off. Consequently P0 lines that are being used
as output port lines are open drain. Writing a 1 to the bit latch leaves both output FETs
off, so the pin floats. In that conditions it can be used as a high-impedance input.

Because Ports 1, 2, and 3 have fixed internal pull-ups they are sometimes called “quasi-
bidirectional” ports. When configured as inputs they pull high and will source current (IIL,
Atmel 8051 Microcontrollers Hardware Manual 2-74

4316E–8051–01/07

	Section 1
	The 8051 Instruction Set
	1.1 Program Status Word
	1.2 Addressing Modes
	1.2.1 Direct Addressing
	1.2.2 Indirect Addressing
	1.2.4 Register-specific Instructions
	1.2.5 Immediate Constants
	1.2.6 Indexed Addressing

	1.3 Arithmetic Instructions
	1.4 Logical Instructions
	1.5 Data Transfers
	1.5.1 Internal RAM

	1.6 External RAM
	1.7 Lookup Tables
	1.8 Boolean Instructions
	1.8.1 Relative Offset

	1.9 Jump Instructions
	1.10 Read-Modify- Write Instruction Features
	1.11 Instruction Set Summary
	1.12 Instructions That Affect Flag Settings
	1.13 Instruction Table
	1.14 Instruction Definitions
	1.14.1 ACALL addr11
	1.14.3 ADDC A, <src-byte>
	1.14.4 AJMP addr11
	1.14.6 ANL C,<src-bit>
	1.14.7 CJNE <dest- byte>,<src-byte>, rel
	1.14.9 CLR bit
	1.14.11 CPL bit
	1.14.12 DA A
	1.14.13 DEC byte
	1.14.14 DIV AB
	1.14.15 DJNZ <byte>,<rel- addr>
	1.14.16 INC <byte>
	1.14.17 INC DPTR
	1.14.18 JB blt,rel
	1.14.19 JBC bit,rel
	1.14.20 JC rel
	1.14.21 JMP @A+DPTR
	1.14.22 JNB bit,rel
	1.14.23 JNC rel
	1.14.24 JNZ rel
	1.14.25 JZ rel
	1.14.26 LCALL addr16
	1.14.27 LJMP addr16
	1.14.28 MOV <dest- byte>,<src-byte>
	1.14.29 MOV <dest- bit>,<src-bit>
	1.14.31 MOVC A,@A+ <base-reg>
	1.14.32 MOVX <dest- byte>,<src-byte>
	1.14.33 MUL AB
	1.14.34 NOP
	1.14.35 ORL <dest-byte> <src-byte>
	1.14.36 ORL C,<src-bit>
	1.14.38 PUSH direct
	1.14.39 RET
	1.14.40 RETI
	1.14.41 RL A
	1.14.42 RLC A
	1.14.44 RRC A
	1.14.46 SJMP rel
	1.14.48 SWAP A
	1.14.49 XCH A,<byte>
	1.14.50 XCHD A,@Ri
	1.14.51 XRL <dest- byte>,<src-byte>

	Section 2
	Common Features Description
	2.1 Introduction
	2.2 Special Function Registers
	2.2.1 Accumulator
	2.2.2 B Register
	2.2.4 Stack Pointer
	2.2.5 Data Pointer
	2.2.6 Ports 0 to 3
	2.2.7 Serial Data Buffer
	2.2.8 Timer Registers
	2.2.9 Capture Registers
	2.2.10 Control Registers

	2.3 Oscillator and Clock Circuit
	2.3.1 More about the On- chip Oscillator

	2.4 CPU Timing
	2.4.1 X1 Mode (Standard Mode)
	2.4.2 X2 Mode

	2.5 Port Structures and Operation
	2.5.1 I/O Configurations
	2.5.2 Writing to a Port
	2.5.4 Read-Modify-Write Feature

	2.6 Accessing External Memory
	2.7 PSEN
	2.8 ALE
	2.8.1 Overlapping External Program and Data Memory Spaces
	2.8.2 ALE Disable Mode

	2.9 Timer/Counters
	2.9.1 Timer/Counter Operations

	2.10 Timer 0
	2.10.1 Mode 0 (13-bit Timer)
	2.10.2 Mode 1 (16-bit Timer)
	2.10.3 Mode 2 (8-bit Timer with Auto-Reload)
	2.10.4 Mode 3 (Two 8-bit Timers)

	2.11 Timer 1
	2.11.1 Mode 0 (13-bit Timer)
	2.11.2 Mode 1 (16-bit Timer)
	2.11.3 Mode 2 (8-bit Timer with Auto Reload)
	2.11.4 Mode 3 (Halt)
	2.11.5 Interrupt
	2.11.6 Timer Registers

	2.12 Timer 2
	2.12.1 Auto-reload Mode
	2.12.2 Programmable Clock-output

	2.13 Serial Interface
	2.13.2 Baud Rate Selection Table for UART
	2.13.4 Using Timer 1 to Generate Baud Rates
	2.13.6 More About Mode 0
	2.13.7 More About Mode 1

	2.14 Framing Error Detection
	2.15 Automatic Address Recognition
	2.15.1 Multiprocessor Communications
	2.15.2 Given Address
	2.15.3 Broadcast Address
	2.15.4 Reset Addresses

	2.16 Interrupts
	2.16.1 How Interrupts Are Handled
	2.16.2 External Interrupts
	2.16.3 Response Time

