Wil7¢

From ElectroDragon

Share &+
Contents

= | Specification
= 1.1 IC Features
= 2 AT Commands
= 2.1 Format
= 2.2 Commands
= 3 Pin Wiring (V090)
= 3.1 Module Pin Description
= 3.2 Old version (V080)
= 4 Setup Verification
= 5 First time use guide
= 5.1 Using arduino as serial port montior
= 5.2 Steps and note
= 5.3 Socket test running result
= 6 Other Arduino Demo Code
= 7 Debug and Note
= 8 Firmware
= 8.1 Updates
= 8.2 Custom firmware or similar
= 8.3 Firmware Details
= 8.4 SDK
= 9 IC Pin Defintion
= 10 Documents

Specification

= Module power 3.3V, regular current consumption at 70ma, peak current at 240mA (300mA must be able to provided)

= +20Dbm power, 100M max transmitting distance on ideal circumstance.

= [t is common and correct to see some random error data when module is power up, and end up with "ready" (Turn baud rate to 115200 can see this actual debug data,
this is used for firmware updating)

IC Features

802.11b/g/n

WIFI @ 2.4 GHz, supports WPA / WPA2 security mode

Ultra-small size module 11.5mm * 11.5mm

Built-in 10 bit precision ADC

Built-in TCP / IP protocol stack

Built-in TR switch, balun, LNA, power amplifier and matching network
Built-in PLL, voltage regulator and power management components
802.11b mode + 19.5dBm output power

Supports antenna diversity

Off leakage current is less than 10uA

Built-in low-power 32-bit CPU: can double as an application processor
SDIO 2.0, SPI, UART

STBC, 1x1 MIMO, 2x1 MIMO

The guard interval A-MPDU, the polymerization of the A-MSDU and 0.4 s of
Within 2ms of the wake, connect and transfer data packets

Standby power consumption is less than 1.0mW (DTIM3)

Operating temperature range -40 ~ 125 °C

AT Commands

Format

= Baud rate at 57600, 115200 (new line) use option "send new line" or 'carriage return' for each command
= x is the commands

Set Inquiry Test Execute
ATH<x>=<...> AT+<x>? AT+<x>=? AT+<x>
AT+CWMODE=<mode>| AT+CWMODE? |AT+CWMODE=? -

Set the network mode Check current mode | Return which modes supported |-

Commands

= carefully there are must be no any spaces between the " and IP address or port

Commands
AT

AT+RST

AT+GMR

AT+CWMODE

AT+CWIAP

AT+CWLAP
AT+CWQAP

AT+ CWSAP

AT+CWLIF

AT+
CIPSTATUS

AT+CIPSTART

AT+CIPMODE

AT+CIPSEND

AT+CIPCLOSE

AT+CIFSR

AT+ CIPMUX

AT+
CIPSERVER

AT+ CIPSTO

+IPD

Description
general test

restart the
module

check
firmware
version

wifi mode

join the AP

list the AP
quit the AP

set the
parameters of
AP

check join
devices' IP
get the
connection
status

set up TCP or
UDP
connection

set data
transmission
mode

send data

close TCP or
UDP
connection

Get IP address

set mutiple
connection

set as server

Set the server
timeout

received data

Pin Wiring (V090)

Type
basic
basic

basic

wifi
wifi
wifi
wifi

wifi

wifi

TCP/IP

TCP/IP

TCP/IP

TCP/IP

TCP/IP

TCP/IP

TCP/IP

TCP/TP

Set/Execute

AT+CWMODE=<mode>

AT+ CWIJAP =<ssid>,<
pwd >

AT+CWLAP
AT+CWQAP

AT+ CWSAP= <ssid>,
<pwd>,<chl>, <ecn>

AT+CWLIF

AT+ CIPSTATUS

1)single connection
(+CIPMUX=0)
AT+CIPSTART= <type>,
<addr>,<port>; 2)
multiple connection
(+CIPMUX=1)
AT+CIPSTART= <id>
<type>,<addr>, <port>

AT+CIPMODE=<mode>

1)single
connection(+CIPMUX=0)
AT+CIPSEND=<length>;
2) multiple connection
(+CIPMUX=1)
AT+CIPSEND= <id>,
<length>

AT+CIPCLOSE=<id> or
AT+CIPCLOSE

AT+CIFSR
AT+ CIPMUX=<mode>

AT+ CIPSERVER=
<mode>[,<port>]

AT+CIPSTO= | AT+CIPSTO?

Inquiry

AT+CWMODE?

AT+ CWIJAP?

AT+ CWSAP?

AT+CIPSEND?

AT+ CIPMUX?

test

AT+CWMODE=?

AT+CWQAP=?

AT+CIPSTART=?

AT+CIPSEND=?

AT+CIPCLOSE=?

AT+ CIFSR=?

< time>0~28800
in second

Parameters and Examples

1= Sta, 2= AP, 3=both, Sta is the default mode of
router, AP is a normal mode for devices

ssid = ssid, pwd = wifi password

ssid, pwd, chl = channel, ecn = encryption; eg.
Connect to your router:
AT+CWIJAP="www.electrodragon.com","helloworld";
and check if connected: AT+CWIAP?

<id>,<type>,<addr>,<port>,<tetype>= client or server
mode

id = 0-4, type = TCP/UDP, addr = IP address, port=
port; eg. Connect to another TCP server, set multiple
connection first: AT+CIPMUX=1; connect:
AT+CIPSTART=4,"TCP","X1.X2.X3.X4",9999

0 not data mode, 1 data mode; return "Link is builded"

eg. send data: AT+CIPSEND=4,15 and then enter the
data.

0 for single connection 1 for multiple connection

mode 0 to close server mode, mode 1 to open; port =
port; eg. turn on as a TCP server:
AT+CIPSERVER=1,8888, check the self server IP
address: AT+CIFSR=?

For Single Connection mode(CIPMUX=0): + IPD,
<len>:

For Multi Connection mode(CIPMUX=1): + IPD,
<id>, <len>: <data>

The pin definition use a standard battery ~ Connect 3V3, GND, Use other FTDI
is the most optimized TXD, RXD, CH_PD to FT232RL standard
case 3V3 (red), GPIOO to board from our store,
GND (green, ONLY two yellow wires to
connect when update GND include GPIOO
firmware) for update

Use FT232RL can supply enough power, must be genius IC of course

Swap the uvart pins if no data show up on the monitor

There are two leds on the board, one is power led (RED), another one is status LED(BLUE), when power up, pwr led keeps on and status led will blink once.
baud rate may work at 9600 (seems the latest correct one), 115200 or 57600

Module Pin Description

Pin High Status Low Status Note
VCC, GND Use standalone power source, or large capacitor, all power of this module from
external
TXD. RXD The serial port, swap these two pins if no data come up. this is very easily go
? wrong. (TX to RX, and RX to TX, not TX to TX and RX to RX)
RST - restart
CH_PD Flash boot and Update Mode - chip enable, so always connect to high status with VCC
GPIO0 - Update mode
GPIO 15 Flash
(when - boot/working |Only for a few version, Wi07-3, normally already to GND when NA
avaialble) Mode
GPIO 16 Normal working mode Hardware
(RST) g RST

should be high on booting, normally already set to

GPIO 2 high on default, don't pull it low on booting

= No need any pull-up
Old version (V080)

The old version

Setup Verification

= check two LEDS status when boot up, if this is not working, double check your wiring first then continue, don't forget CHPD to VCC

= check if your devices (phone) can find a wifi spot named like "ESP_98529F" or similar, the later number part is the mac ID, if you can see this wifi spot, it means
your module boot up sucessfully

= swap RX and TX pins if you can not get AT commands response

= Tick "new line" option on SSCOM32 serial port monitor tool

= Try baudrate 9600 or 115200 normally should be these two, old version is 115200

- a“ il
il j =~ E
4 . |
at T
= +
"ESP_990B15" is the See the final "ready"
module wifi spot when boot up

successfully

= Don't forget to connect GPIO15 to GND if you are using the SMD model
First time use guide
Using arduino as serial port montior

= Connect VCC and GND of module to 3v3 and GND of arduino, RXD to TXD of arduino, and TXD to RXD of arduino (should add resistors or logic level shifter for
logic level and protect 10s)

= Simply upload blink sketch to arduino, to ensure MCU won't use serial port

= User any other serial port monitor like SSCOM32 we used here, available here UART

= In the serial port, you should see "ready" in the end of the random data after powered up.
= Send AT (commands, with "newline option")will receive OK in return.

Steps and note
= AT+RST restart the module, received some strange data, and "ready”
= AT+CWMODe=3 change the working mode to 3, AP+STA, only use the most versatile mode 3 (AT+RST may be necessary when this is done.)

Join Router

= AT+CWLAP search available wifi spot

= AT+CWJIAP=“you ssid”, “password” join my mercury router spot (ops, the wifi password is here :))
n AT+CWJAP=? check if connected successfully, or use ATHCWIAP?

TCP Client

» AT+CIPMUX=1 turn on multiple connection

= AT+CIPSTART=4,"TCP","192,168.1.104'",9999 connect to remote TCP server 192.168.1.104 (the PC)
= AT+CIPMODE=1 optionally enter into data transmission mode

» AT+CIPSEND=4,5 send data via channel 4, 5 bytes length (see socket test result below, only "elect" received), link will be "unlink" when no data go through

TCP Server
= AT+CIPSERVER=1,9999 setup TCP server, on port 9999, 1 means enable

= AT+CIFSR check module IP address
= PC as a TCP client connect to module using socket test, send data

o | |[reCIEurE:] B
¥
THCIESTART=A, “TE2", 142, 388, L. 104", 6900 |
THCIFEENDS, §

i L
sy

1
e sy
(homa”
LIME, il TR 0
3 ITFTT-TI- LN T20F", -4 THCTES arvest, 0061
e 5]
= -8} A
3 THIESERVER=1, D0
DL e HTR-6008°, 643
13
TeCHINF=MERC VR SRS, “HE "

¥
ORI
AP O pTRiesT

E
THCIFITRNT=4, “TE™, "1, b6 | BO4". 7968

X -4

CpuaFila|fFitame Suoifila | Swabute| Claw |~ Huduia Dpeslile | Filae SudPils | Swsure | Clew [TesBats
Conon [C13 =] @ ClessCom Haly WHWW, MELET . EOM = | Coatan [~] CliseCm | Halp WWW MCUS! COM ur
Bwlla[570 | FDTR [RTS

Beala[STED =] [BTR [ARS ESMCTEIF TR0, 00 2055010

Dt T Seied ave [100
Stagli I Scdits 7 Senchlen B
VerifpiMore =] Data ingat e]

Flce{torm =] [FTVCTTSE

I Sand@E W Sendes I.—mﬂ(ﬁ"’(‘l o WSl WL
varieyHon | Dute ot (SO0] |SRGER bty e
FioCofHion =] PEETEE

ool oon SHET R135 COMLE ppened 370000ps 8 |CT5=0 05=0 ALSD=0 promw.micuil con SAST] COMIY opened STE0bgs & (1520 DSRS0 RS0

e ila se @

Socket test running result

= In the sockettest, do not tick the "secure" in TCP client, it causes unstable

00 R S T T | @ ern:300 S T

«Client | »Sorver | o Udp | = Anout | o client | e Server | sUdp | «About
Listen On Connect To
P Address 192.188.1.104 IP Address 192.168.1.111 .
Paorl 8998 Boit Slop Listening Fort 9899 Eost Disconnect | [Securs
| SockefTestv3.0 T SocketTestv 30
Cannected Cliant: < 192 168.1.111 [192168.1.111] = Connected To = 1921681111 [192 168.1,111] =
Comversation with Client Corversation with host

> Server Started on Pot 9999
-
= Mew Client 192.168.1.111

Elect il
|
Send Save | Sand Save
1 | i
Message Send Disconnect | |
| Clear | Message Elecrodragon| send |

Other Arduino Demo Code

= In this case, the wifi module still connect to hardware serial (software serial port can not higher than 19200 baud rate), and another software serial port should be
created on arduino and print out via another serial port
= So the connection should be

Mifi‘s uart to arduino hardware uart;

larduino's sotware UART to another serial port device, for example like FTDI basic, CP2102 breakout, etc, and this serial port device can connect to PC to read data
1

|
#include <SoftwareSerial.h>

#define SSID " XXXXXXXX "
#define PASS " XXXXXXXX "
wdefine DST_IP "220.181.111.85" //baidu.com

SoftwareSerial dbgSerial(10, 11); // RX, TX
wvoid setup()
:

// Open serial communications and wait for port to open:
Serial.begin(57600);

Serial.setTimeout(5000);

dbgSerial.begin(9600); //can't be faster than 19260 for softserial
dbgSerial.println("ESP8266 Demo");

//test if the module is ready

Serial.println("AT+RST");

delay(1000);

if (Serial.find("ready"))

dbgSerial.println("Module is ready");

lse

~ e

dbgSerial.println("Module have no response.");
while (1);

delay(1000);

//connect to the wifi
boolean connected = false;
for (int i = @; i < 55 i++)

if (connectWiFi())

connected = true;
break;

}
if (!connected) {
while (1);

¥

delay(5000);

//print the ip addr

/*Serial.println("AT+CIFSR");

dbgSerial.println("ip address:");

while (Serial.available())
dbgSerial.write(Serial.read());*/

//set the single connection mode

Serial.println("AT+CIPMUX=8");

ST T T T T T T T T T T T T T T T T m TS

Evoid loop()
{

String cmd = "AT+CIPSTART=\"TCP\",\"";
cmd += DST_IP;

Vocmd += B

| Serial.println(cmd);

\ dbgSerial.println(cmd);

\ if (Serial.find("Error")) return;
\ omd = "GET / HTTP/1.@\r\n\r\n";

| Serial.print("AT+CIPSEND=");

1 Serial.println(cmd.length());

' if (Serial.find(">"))

[

dbgSerial.print(">");

} else

{

Serial.println("AT+CIPCLOSE");
dbgSerial.println("connect timeout");
delay(1000);

return;

¥

: @

! Serial.print(cmd);

1 delay(2000);

\ //Serial.find("+IPD");

! (Serial.available())
VoA

char ¢ = Serial.read();
dbgSerial.write(c);

H (c == '\r') dbgSerial.print('\n');
E dbgSerial.println("====");
' delay(1000);

'

3

boolean connectWiFi()

'

h¢

! Serial.println("AT+CWMODE=1");

! String cmd = "AT+CWIAP=\"";

cmd += SSID;

cmd += "\",\"";

cmd += PASS;

cmd += "\"";

dbgSerial.println(cmd);

Serial.println(cmd);

delay(2000);
(Serial.find("0K"))

dbgSerial.println("0K, Connected to WiFi.");
true;

dbgSerial.println("Can not connect to the WiFi.");
false;

~— ~

Debug and Note

Better use standalone power source, not using power from USB-TTL module, it may not able to provide sufficient current.

Module will disconnect "unlink" TCP/UDP when no data go through

Wait AT commands feedback and continue, otherwise will return "busy"

Potential cause for "error" : password length must be more than 8 bytes, use multiple connection and mode three, try disconnect current connection before try
"AT+CWLAP" (module will reconnect after restart), re-flash firmware.

mac address please check in your router page or use arp to check.

= (Ist Oct.) change CR to CR/LF (\r\n in coding), which means "carriage return and line feed" for new firmware version 0.92

Firmware

You can find all the tools on our documents link at the end of this page. two types of firmware examples available: AT (Commands, normally only UART pins used) and 10
(Control, full IOs version)

e

Hll

ESP flash download ESP8266 flasher, less friendly, a little
tool, image show the interface in chinese, complex to use, only
setting of updating but one click to done COM1-6

= ESPTool (Python) in command line (https://github.com/themadinventor/esptool/)
How to use for XTCOM

Download the bin file

Set the module to update mode, connect the module : choose "tools" - "configure device"
Upload bin file: API Test - Flash image download

upload the bin file eagle.app.v6.flash.bin at 0x00000 (app)

upload the second bin file eagle.app.v6.iromOtext at 0x40000 (this one is optionally, libraries)

Updates

= Latest update can find it on espressif community (http://bbs.espressif.com/viewforum.php?f=5&sid=9d6b977753163ccd7b338340010¢0862)

Main update (Cloud update to V0.9.2.0): See the post here about cloud update (http://blog.electrodragon.com/cloud-updating-your-wi07c-esp8266-now/) (From 00160900
to 00170901 and 00180902), or find the tool and firmware 00170901 here (https://drive.google.com/open?id=0B3dUKfqzZnlwVGel YnFyUjgxelE&authuser=0) .

= Find most upated firmware on this google link. (https://drive.google.com/open?id=0B3dUKfqzZnlwRjFaNTUzZFptbzg&authuser=0) , and check the update log
below

= V0.9.2.2 (https://drive.google.com/open?id=0B3dUK{qzZnlwdUJUc2hkZDUyVjA&authuser=0) - support to change baudrate, default baudrate is 9600, More stable
version than the cloud updated version, few bugs fixed.

AT command:

Commands Description Note

AT+CIOBAUD=? (Inquiry), AT+CIOBAUD? (check), supported 9600, 19200, 38400, 57600, 74880, 115200,
AT+CIOBAUD=9600 (Set) 230400,460800, 921600

AT+CSYSWDTENABLE |watchdog, auto restart when program have errors occurred, enable -
AT+CSYSWDTDISABLE watchdog, auto restart when program have errors occurred. disable -

AT+CIOBAUD

Custom firmware or similar

= LUA based firmware, easy to use (https://github.com/funshine/nodemcu-firmware)
= GPIO Control (https://drive.google.com/open?id=0B3dUKfqzZnlwZ31zS21yVnFEaEO&authuser=0) . See explanation post here.
(http://blog.electrodragon.com/esp8266-gpio-test-edited-firmware/)

Firmware Details

Boot Process

= Reset vector is 0x40000080.

= Boots into Espressif code in IROMO.

= [oads SPI ROM data.

= Starts executing ESP SDK-code shadowed SPI ROM (unconfirmed).

SPI Flash ROM Layout
Address |Size Name Description
00000h 248k | app.v6.flash.bin User application

3E000h 8k master_device key.bin |OTA device key

40000h 240K | app.v6.iromOtext.bin SDK libraries

7C000h 8k esp_init_data default.bin | Default configuration

7E000h 8k blank.bin Filled with FFh. May be WiFi configuration.

SDK

= Official SDK link, maybe the most easist to use on ubuntu (https://drive.google.com/folderview?id=0BSbwBE9AS5dBXaExvdDEx VFNrUXM&usp=sharing)

= GCC Linux toolchain nurdspace First setup guide - GCC https://nurdspace.nl/ESP8266/First_setup, not yet tested to work with 0.92 firmware, work with 0.91 (seems
different settings, need update)

= SDK source code and more tools please find on the drive for now, examples folder includes AT (default UART commands flashed in the module) and IoT demo
(simple webserver, socket, light control, etc)

IC Pin Defintion

(GND on large
bottom pad)

. N|v—|D|lJ’\|cD|r-—<Q|Ln|
(2] Lor] BN sl ™) o™ N N N ™Y
mxx <« 0 ZF 00
® n-88_38¢F%
r N5 s j | = &5
1 o £ 2 2 SGPIOS| ,,
—VDODA X [DVDD
i * sp_pata 1}
-3 lvopaps SD_DATA_ 022
4 21
| veoara — SD_CLK 21
—vDD_RTC SD_CMD |-
S SD_DATA_ 32
7 lcHip EN SD_DATA 2|18
—& Ixpp_pCDC 5 VDDPST |2
w O oD
25585200 .r:.|‘cQr
= =0 =0 0 oo
Zz= 2 > =2 = 0O O 35O
[=]

Pin Name

1 VDDA

2 LNA

3 VDD3P3

4 VDD3P3

5 VDD _RTC

6 TOUT

7 CHIP_EN

8 XPD_DCDC

9 MTMS

10 |MTDI

11 |VDDPST

12 |MTCK

13 |MTDO

14 |GPIO2

15 |GPIOO

16 |GPIO4

17 | VDDPST

18 |SDIO DATA 2
19 |SDIO_DATA 3
20 |SDIO_CMD

21 |SDIO_CLK

22 |SDIO_DATA 0
23 |SDIO_DATA 1
24 |GPIOS

25 |UORXD

26 |UOTXD

27 |XTAL OUT
28 |XTAL IN

29 |VDDD

30 |VDDA

31 |RESI2K

32 |EXT_RSTB
Documents

Type

P

10

o Bl =R ie - -]

IO

IO
10

IO

IO

IO

10

IO

I0

I0
10
10
IO
P

10

10

GPIO

GPIO16

GPIO14
GPIO12

GPIO13

GPIO15

GPIO2

GPIOO

GPIO4

GPIOS
GPIO3

GPIO1

Function

Analog Power 3.0 ~3.6V

RF Antenna Interface,Chip Output Impedance=50

Q
Recommend that the - type matching network is
retained.

Amplifier Power 3.0~3.6V
Amplifier Power 3.0~3.6V
NC(1.1V)

ADC Pin

Chip Enable. High: On, chip works properly;
Low: off power supply, minimum current

Deep-Sleep Wakeup, external RST, low to reset,
high for working mode

HSPICLK
HSPIQ
Digital/IO Power Supply (1.8V~3.3V)

HSPID

HSPICS

UART Tx during flash progamming (?); must be
high when booting, already set to high on default

SPICS2

Digital/IO Power Supply (1.8V~3.3V)

Connect to SD_D2 (Series R 200Q2);SPIHD;
HSPIHD

Connect to SD_D3 (Series R 200Q2); SPIWP;
HSPIWP

Connect to SD_CMD(Series R 200Q); SPICSO
Connect to SD_CLK (Series R 200Q2); SPICLK
Connect to SD_DO (Series R 200Q2); SPIQ
Connect to SD_D1 (Series R 200Q); SPID

UART Rx during flash progamming (?)

GPIO1; SPICS1 (?)

Connect to crystal output, can be used to provide
BT clock input

Connect to crystal input

Analog Power 3.0~3.6V

Analog Power 3.0~3.6V

Connect to series R 12k to ground

External reset signal (Low: Active)

UART, IIC, 3Bits
SDIO, LED

12C SCL IR recv

Communication status LED | (Light)PWM red LED control

RST Key (plug) RST Key

(Light)PWM green LED
control; (Plug) relay control,

3bits SDIO
H/L TTL

3bits SDIO; UART1
system info print (TX); 12C
SDA

3bits SDIO; Status LED (plug) wifi status LED

UARTO for user

UARTO for user, do not
allow low when booting

Plug/PWM light/Sensor

(Light)PWM blue LED control;

Boot

High for
booting

Low for
booting

Low for
flashing
mode

= Our documents link here, will keep updating from time to time. (https://drive.google.com/folderview?id=0B3dUK{qzZnlwRXhBTmlhaTROTmM&usp=sharing)
= ESP8266 wiki page, very helpful (https://github.com/esp8266/esp8266-wiki/wiki/Examples)
= ESP8266 IoT Standard example (in Progress)

Retrieved from "http://www.electrodragon.com/w/index.php?title=Wi07c&oldid=7618"
Categories: Ethernet, Wifi

ESP8266

» This page was last modified on 18 January 2015, at 11:55.
= This page has been accessed 161,092 times.

