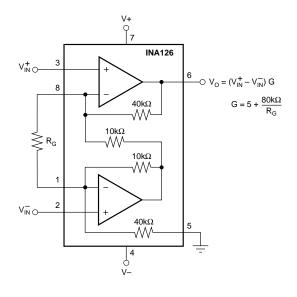


INA126 INA2126

SBOS062A – JANUARY 1996 – REVISED AUGUST 2005

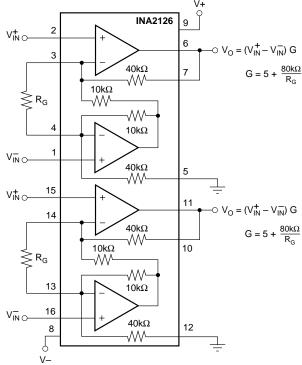

*Micro*POWER INSTRUMENTATION AMPLIFIER Single and Dual Versions

FEATURES

- LOW QUIESCENT CURRENT: 175µA/chan.
- WIDE SUPPLY RANGE: ±1.35V to ±18V
- LOW OFFSET VOLTAGE: 250µV max
- LOW OFFSET DRIFT: 3µV/°C max
- LOW NOISE: 35nV/√Hz
- LOW INPUT BIAS CURRENT: 25nA max
- 8-PIN DIP, SO-8, MSOP-8 SURFACE- MOUNT DUAL: 16-Pin DIP, SO-16, SSOP-16

APPLICATIONS

- INDUSTRIAL SENSOR AMPLIFIER: Bridge, RTD, Thermocouple
- PHYSIOLOGICAL AMPLIFIER: ECG, EEG, EMG
- MULTI-CHANNEL DATA ACQUISITION
- PORTABLE, BATTERY OPERATED SYSTEMS



DESCRIPTION

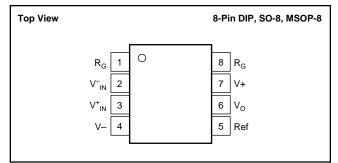
The INA126 and INA2126 are precision instrumentation amplifiers for accurate, low noise differential signal acquisition. Their two-op-amp design provides excellent performance with very low quiescent current (175 μ A/channel). This, combined with a wide operating voltage range of ± 1.35 V to ± 18 V, makes them ideal for portable instrumentation and data acquisition systems.

Gain can be set from 5V/V to 10000V/V with a single external resistor. Laser trimmed input circuitry provides low offset voltage (250 μ V max), low offset voltage drift (3 μ V/°C max) and excellent common-mode rejection.

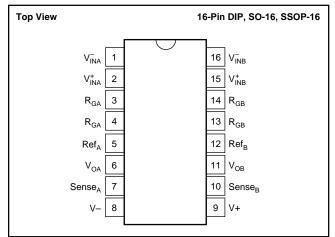
Single version package options include 8-pin plastic DIP, SO-8 surface mount, and fine-pitch MSOP-8 surface-mount. Dual version is available in the space-saving SSOP-16 fine-pitch surface mount, SO-16, and 16-pin DIP. All are specified for the -40° C to $+85^{\circ}$ C industrial temperature range.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.



ABSOLUTE MAXIMUM RATINGS(1)


Input Signal Current ⁽²⁾ Output Short Circuit Operating Temperature	(V–)–0.7 to (V+)+0.7V
Storage Temperature Lead Temperature (soldering, 10s)	–55°C to +125°C

NOTES: (1) Stresses above these ratings may cause permanent damage. (2) Input signal voltage is limited by internal diodes connected to power supplies. See text.

PIN CONFIGURATION (Single)

PIN CONFIGURATION (Dual)

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

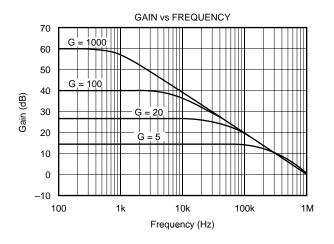
PACKAGE/ORDERING INFORMATION

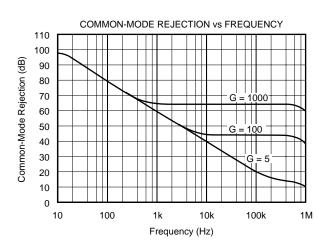
PRODUCT	PACKAGE-LEAD	PACKAGE MARKING				
Single						
INA126PA INA126P	DIP-8 DIP-8	INA126PA INA126P				
INA126UA INA126U	SO-8 SO-8	INA126UA INA126U				
INA126EA ⁽²⁾	MSOP-8 "	A26 ⁽³⁾				
INA126E ⁽²⁾ "	MSOP-8 "	A26 ⁽³⁾				
Dual						
INA2126PA INA2126P	DIP-16 DIP-16	INA2126PA INA2126P				
INA2126UA INA2126U	SO-16 SO-16	INA2126UA INA2126U				
INA2126EA ⁽²⁾	SSOP-16 "	INA2126EA "				
INA2126E ⁽²⁾ "	SSOP-16 "	INA2126E "				

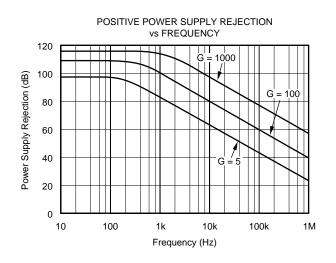
NOTES: (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com. (2) MSOP-8 and SSOP-16 packages are available only on 250 or 2500 piece reels. (3) Grade designation is marked on reel.

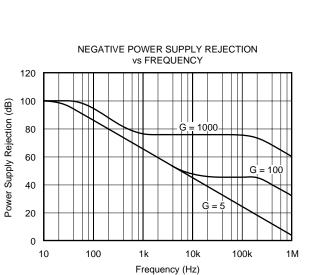
ELECTRICAL CHARACTERISTICS

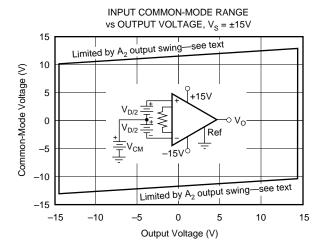
At T_{A} = +25°C, V_{S} = $\pm 15V,~R_{L}$ = 25k $\Omega,$ unless otherwise noted.

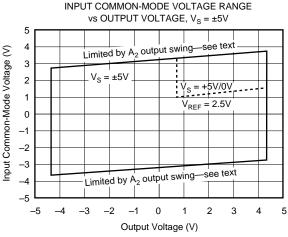

			A126P, U, I A2126P, U,		INA126PA, UA, EA INA2126PA, UA, EA			
PARAMETER	CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	МАХ	UNITS
INPUT								
Offset Voltage, RTI			±100	±250		±150	±500	μV
vs Temperature			±0.5	±3		*	±5	μV/°C
vs Power Supply (PSRR)	$V_{S} = \pm 1.35V \text{ to } \pm 18V$		5	15		*	50	μV/V
Input Impedance	-		10 ⁹ 4			*		Ω∥pF
Safe Input Voltage	R _S = 0	(V–)–0.5		(V+)+0.5	*		*	V
1 0	$R_{S} = 1k\Omega$	(V–)–10		(V+)+10	*		*	V
Common-Mode Voltage Range	$V_0 = 0V$	±11.25	±11.5	() -	*	*		v
Channel Separation (dual)	G = 5, dc		130					dB
Common-Mode Rejection	$R_{S} = 0, V_{CM} = \pm 11.25V$	83	94		74	90		dB
INA2126U (dual SO-16)	110 = 0, 000 = 111200	80	94					dB
				05			50	
INPUT BIAS CURRENT			-10	-25		*	-50	nA
vs Temperature			±30			*		pA/°C
Offset Current			±0.5	±2		*	±5	nA
vs Temperature			±10			*		pA/°C
GAIN			G = 5 to 10	<		*		V/V
Gain Equation		G	= 5 + 80kΩ/	'R _G		*		V/V
Gain Error	$V_{O} = \pm 14V, G = 5$		±0.02	±0.1		*	±0.18	%
vs Temperature	G = 5		±2	±10		*	*	ppm/°C
Gain Error	$V_0 = \pm 12V, G = 100$		±0.2	±0.5		*	±1	%
vs Temperature	G = 100		±25	±0.0 ±100		*	*	ppm/°C
Nonlinearity	$G = 100, V_0 = \pm 14V$		±0.002	±0.012		*	*	% pp:///
	0 = 100, v ₀ = ±14v		±0.002	±0.012		~	~	70
NOISE								
Voltage Noise, f = 1kHz			35			*		nV/√Hz
f = 100Hz			35			*		nV/√Hz
f = 10Hz			45			*		nV/√Hz
$f_B = 0.1Hz$ to 10Hz			0.7			*		μV _{PP}
Current Noise, f = 1kHz			60			*		fA/√Hz
$f_B = 0.1Hz$ to 10Hz			2			*		рА _{РР}
OUTPUT								
Voltage, Positive	$R_L = 25k\Omega$	(V+)-0.9	(V+)-0.75		*	*		v
Negative	$R_1 = 25k\Omega$	(V–)+0.95			*	*		v
Short-Circuit Current	Short-Circuit to Ground	(*)10.00	+10/-5		~	*		mA
	Short-Circuit to Cround		1000			*		
Capacitive Load Drive		_	1000			*		pF
FREQUENCY RESPONSE								
Bandwidth, –3dB	G = 5		200			*		kHz
	G = 100		9			*		kHz
	G = 500		1.8			*		kHz
Slew Rate	$V_0 = \pm 10V, G = 5$		0.4			*		V/µs
Settling Time, 0.01%	10V Step, G = 5		30			*		μs
	10V Step, G = 100		160			*		μs
	10V Step, G = 500		1500			*		μs
Overload Recovery	50% Input Overload		4			*		μs
POWER SUPPLY		1				1		
		±1.05	±15	±10	v.	~	~	v
Voltage Range		±1.35	±15	±18	*	*	*	
Current (per channel)	$I_0 = 0$		±175	±200		*	*	μΑ
TEMPERATURE RANGE								
Specification Range		-40		+85	*		*	°C
Operation Range		-55		+125	*		*	°C
Storage Range		-55		+125	*		*	°C
Thermal Resistance, θ_{JA}								
8-Pin DIP			100			*		°C/W
SO-8 Surface-Mount			150			*		°C/W
MSOP-8 Surface-Mount			200			*		°C/W
16-Pin DIP (dual)			80			*		°C/W
SO-16 (dual)			100			*		°C/W
SSOP-16 (dual)	1	1	100			*	1	°C/W

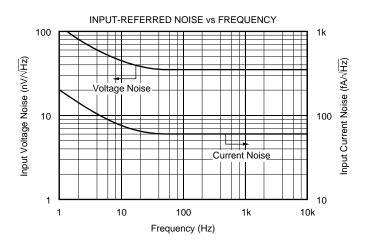

* Specification same as INA126P, INA126U, INA126E; INA2126P, INA2126U, INA2126E.

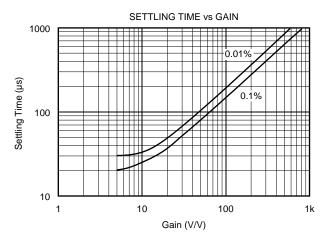


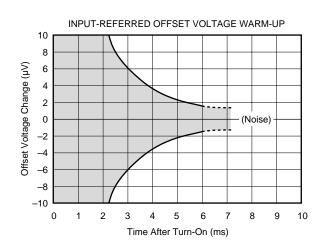

TYPICAL CHARACTERISTICS

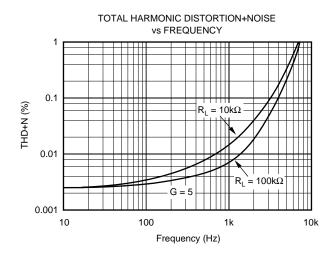

At T_A = +25°C and V_S = ±15V, unless otherwise noted.

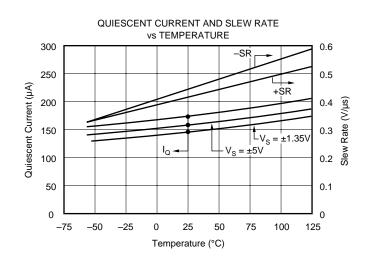


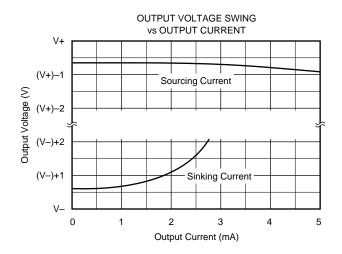


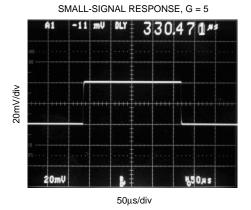


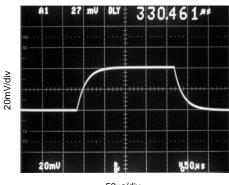



TYPICAL CHARACTERISTICS (Cont.)


At T_A = +25°C and V_S = $\pm 15V,$ unless otherwise noted.

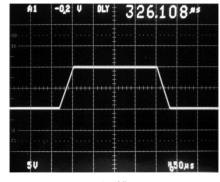






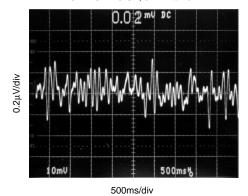
TYPICAL CHARACTERISTICS (Cont.)

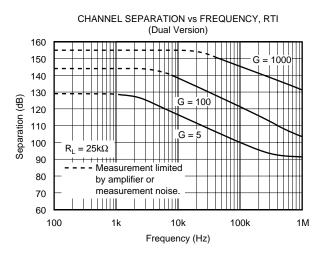
At T_A = +25°C and V_S = ±15V, unless otherwise noted.



SMALL-SIGNAL RESPONSE, G = 100

50µs/div


LARGE-SIGNAL RESPONSE, G = 5



5V/div

50µs/div

Ľ

APPLICATION INFORMATION

Figure 1 shows the basic connections required for operation of the INA126. Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins as shown.

The output is referred to the output reference (Ref) terminal which is normally grounded. This must be a low-impedance connection to ensure good common-mode rejection. A resistance of 8Ω in series with the Ref pin will cause a typical device to degrade to approximately 80dB CMR.

Dual versions (INA2126) have feedback sense connections, $Sense_A$ and $Sense_B$. These must be connected to their respective output terminals for proper operation. The sense connection can be used to sense the output voltage directly at the load for best accuracy.

SETTING THE GAIN

Gain is set by connecting an external resistor, R_G, as shown:

$$G = 5 + \frac{80k\Omega}{R_G}$$
(1)

Commonly used gains and R_G resistor values are shown in Figure 1.

The $80k\Omega$ term in equation 1 comes from the internal metal film resistors which are laser trimmed to accurate absolute values. The accuracy and temperature coefficient of these resistors are included in the gain accuracy and drift specifications.

The stability and temperature drift of the external gain setting resistor, R_G , also affects gain. R_G 's contribution to gain accuracy and drift can be directly inferred from the gain

equation (1). Low resistor values required for high gain can make wiring resistance important. Sockets add to the wiring resistance, which will contribute additional gain error in gains of approximately 100 or greater.

OFFSET TRIMMING

The INA126 and INA2126 are laser trimmed for low offset voltage and offset voltage drift. Most applications require no external offset adjustment. Figure 2 shows an optional circuit for trimming the output offset voltage. The voltage applied to the Ref terminal is added to the output signal. An op amp buffer is used to provide low impedance at the Ref terminal to preserve good common-mode rejection.

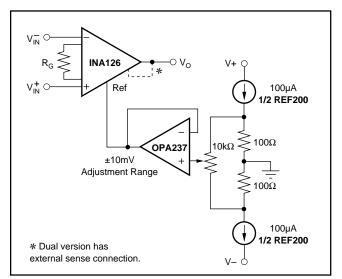


FIGURE 2. Optional Trimming of Output Offset Voltage.

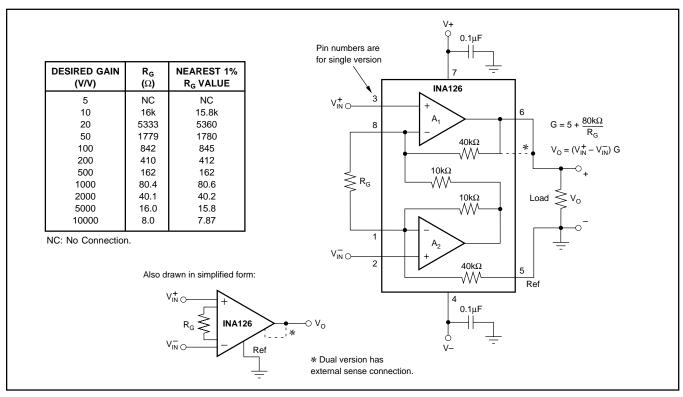


FIGURE 1. Basic Connections.

INPUT BIAS CURRENT RETURN

The input impedance of the INA126/2126 is extremely high—approximately $10^{9}\Omega$. However, a path must be provided for the input bias current of both inputs. This input bias current is typically –10nA (current flows out of the input terminals). High input impedance means that this input bias current changes very little with varying input voltage.

Input circuitry must provide a path for this input bias current for proper operation. Figure 3 shows various provisions for an input bias current path. Without a bias current path, the inputs will float to a potential which exceeds the commonmode range and the input amplifiers will saturate.

If the differential source resistance is low, the bias current return path can be connected to one input (see the thermocouple example in Figure 3). With higher source impedance, using two equal resistors provides a balanced input with advantages of lower input offset voltage due to bias current and better high-frequency common-mode rejection.

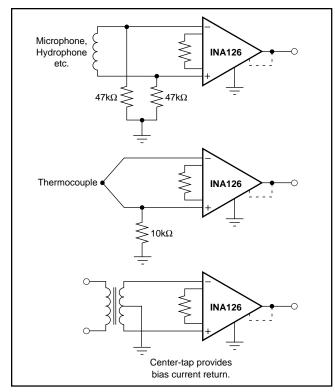


FIGURE 3. Providing an Input Common-Mode Current Path.

INPUT COMMON-MODE RANGE

The input common-mode range of the INA126/2126 is shown in the typical characteristic curves. The commonmode range is limited on the negative side by the output voltage swing of A_2 , an internal circuit node that cannot be measured on an external pin. The output voltage of A_2 can be expressed as:

$$V_{O2} = 1.25 V_{IN}^{-} - (V_{IN}^{+} - V_{IN}^{-}) (10k\Omega/R_{G})$$
(2)

(Voltages referred to Ref terminal, pin 5)

The internal op amp A_2 is identical to A_1 and its output swing is limited to typically 0.7V from the supply rails. When the input common-mode range is exceeded (A_2 's output is saturated), A_1 can still be in linear operation and respond to changes in the non-inverting input voltage. The output voltage, however, will be invalid.

LOW VOLTAGE OPERATION

The INA126/2126 can be operated on power supplies as low as ± 1.35 V. Performance remains excellent with power supplies ranging from ± 1.35 V to ± 18 V. Most parameters vary only slightly throughout this supply voltage range—see typical characteristic curves. Operation at very low supply voltage requires careful attention to ensure that the commonmode voltage remains within its linear range. See "Input Common-Mode Voltage Range."

The INA126/2126 can be operated from a single power supply with careful attention to input common-mode range, output voltage swing of both op amps and the voltage applied to the Ref terminal. Figure 4 shows a bridge amplifier circuit operated from a single +5V power supply. The bridge provides an input common-mode voltage near 2.5V, with a relatively small differential voltage.

INPUT PROTECTION

The inputs are protected with internal diodes connected to the power supply rails. These diodes will clamp the applied signal to prevent it from exceeding the power supplies by more than approximately 0.7V. If the signal source voltage can exceed the power supplies, the source current should be limited to less than 10mA. This can generally be done with a series resistor. Some signal sources are inherently currentlimited and do not require limiting resistors.

CHANNEL CROSSTALK—DUAL VERSION

The two channels of the INA2126 are completely independent, including all bias circuitry. At DC and low frequency there is virtually no signal coupling between channels. Crosstalk increases with frequency and is dependent on circuit gain, source impedance and signal characteristics.

As source impedance increases, careful circuit layout will help achieve lowest channel crosstalk. Most crosstalk is produced by capacitive coupling of signals from one channel to the input section of the other channel. To minimize coupling, separate the input traces as far as practical from any signals associated with the opposite channel. A grounded guard trace surrounding the inputs helps reduce stray coupling between channels. Carefully balance the stray capacitance of each input to ground, and run the differential inputs of each channel parallel to each other, or directly adjacent on top and bottom side of a circuit board. Stray coupling then tends to produce a common-mode signal that is rejected by the IA's input.

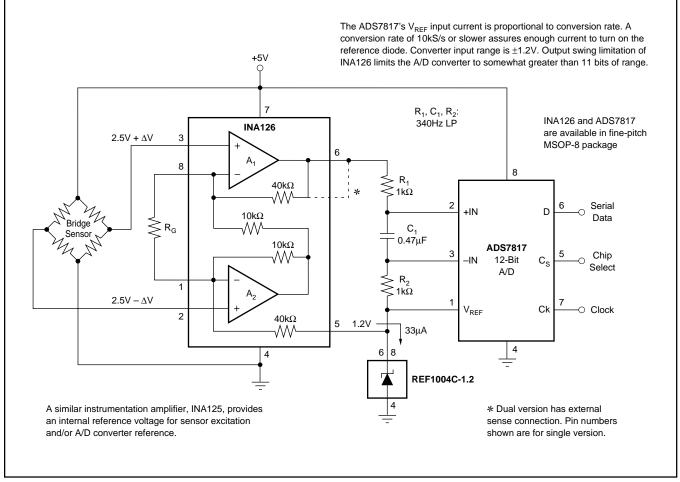


FIGURE 4. Bridge Signal Acquisition—Single 5V Supply.

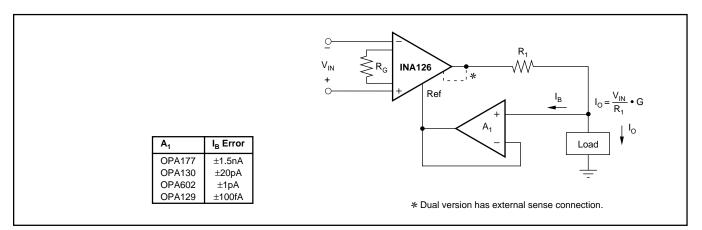
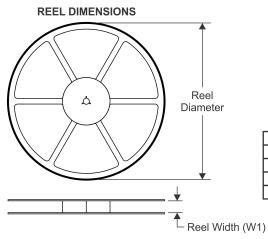
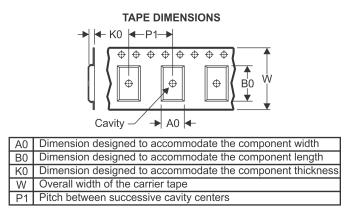


FIGURE 5. Differential Voltage-to-Current Converter.



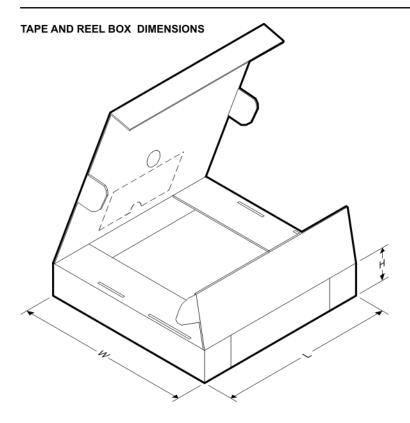

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*Al	All dimensions are nominal												
	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	INA126E/250	VSSOP	DGK	8	250	180.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
	INA126EA/250	VSSOP	DGK	8	250	180.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
	INA2126UA/2K5	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

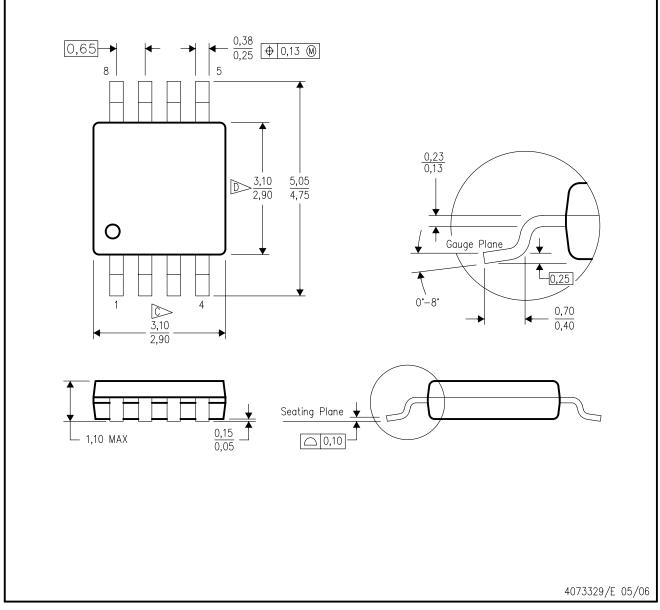
8-Apr-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
INA126E/250	VSSOP	DGK	8	250	210.0	185.0	35.0
INA126EA/250	VSSOP	DGK	8	250	210.0	185.0	35.0
INA2126UA/2K5	SOIC	D	16	2500	367.0	367.0	38.0

P(R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE



- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.

- D Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

D (R-PDSO-G16)

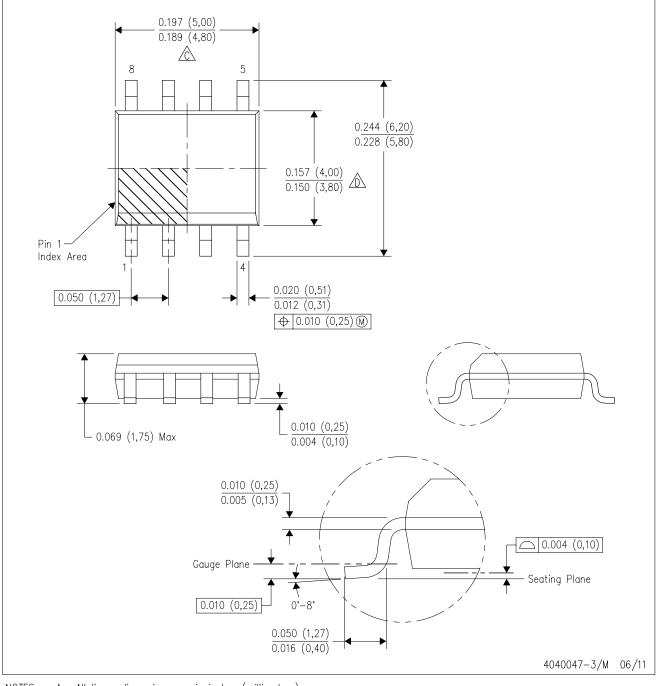
PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

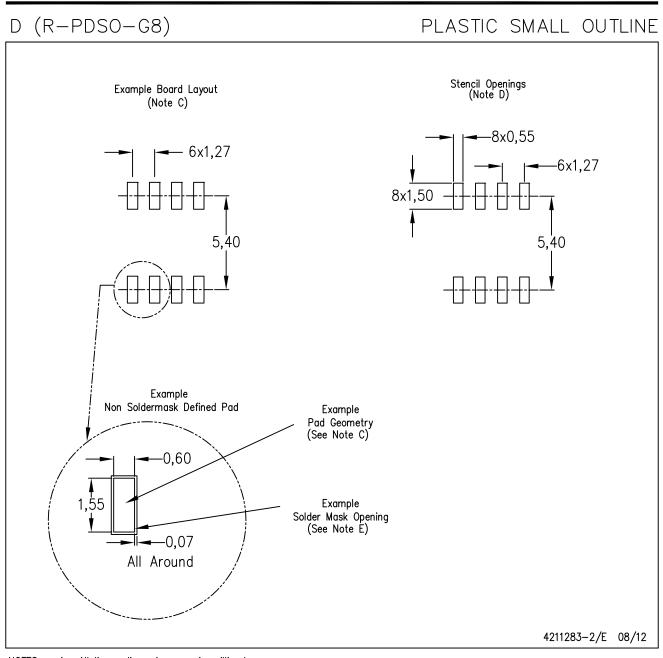
4211283-4/E 08/12

D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around


NOTES: A. All linear dimensions are in millimeters.

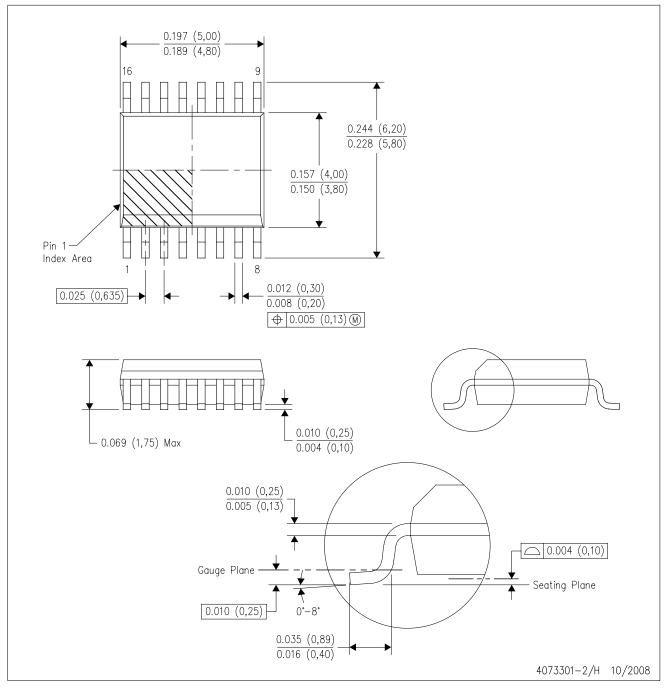
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

D (R-PDSO-G8)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DBQ (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15) per side.

D. Falls within JEDEC MO-137 variation AB.

