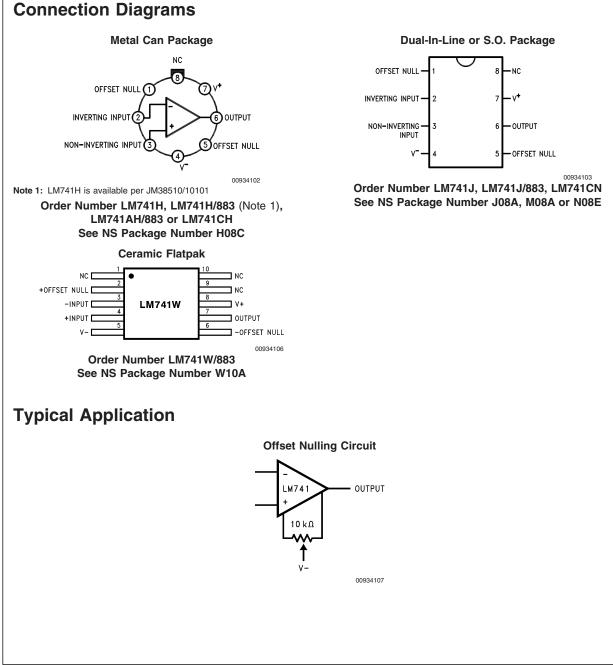


LM741 Operational Amplifier General Description


The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications. The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and

output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations.

The LM741C is identical to the LM741/LM741A except that the LM741C has their performance guaranteed over a 0°C to $+70^{\circ}$ C temperature range, instead of -55° C to $+125^{\circ}$ C.

August 2000

LM741

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. (Note 7)

> LM741A LM741 LM741C Supply Voltage ±22V ±22V ±18V Power Dissipation (Note 3) 500 mW 500 mW 500 mW Differential Input Voltage ±30V ±30V ±30V Input Voltage (Note 4) ±15V $\pm 15V$ ±15V Continuous **Output Short Circuit Duration** Continuous Continuous **Operating Temperature Range** -55°C to +125°C -55°C to +125°C 0°C to +70°C -65°C to +150°C -65°C to +150°C -65°C to +150°C Storage Temperature Range 150°C 150°C 100°C Junction Temperature Soldering Information 260°C 260°C 260°C N-Package (10 seconds) J- or H-Package (10 seconds) 300°C 300°C 300°C M-Package Vapor Phase (60 seconds) 215°C 215°C 215°C 215°C 215°C Infrared (15 seconds) 215°C See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

> > 400V

400V

400V

ESD Tolerance (Note 8)

Electrical Characteristics (Note 5)

Parameter	Conditions	LM741A			LM741			LM741C			Units
		Min	Тур	Мах	Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	$T_A = 25^{\circ}C$										
	$R_{S} \le 10 \text{ k}\Omega$					1.0	5.0		2.0	6.0	mV
	$R_{S} \le 50\Omega$		0.8	3.0							mV
	$T_{AMIN} \le T_A \le T_{AMAX}$										
	$R_{S} \le 50\Omega$			4.0							mV
	$R_{S} \le 10 \text{ k}\Omega$						6.0			7.5	mV
Average Input Offset				15							µV/°C
Voltage Drift											
Input Offset Voltage	$T_{A} = 25^{\circ}C, V_{S} = \pm 20V$	±10				±15			±15		mV
Adjustment Range											
Input Offset Current	T _A = 25°C		3.0	30		20	200		20	200	nA
	$T_{AMIN} \le T_A \le T_{AMAX}$			70		85	500			300	nA
Average Input Offset				0.5							nA/°C
Current Drift											
Input Bias Current	T _A = 25°C		30	80		80	500		80	500	nA
	$T_{AMIN} \leq T_A \leq T_{AMAX}$			0.210			1.5			0.8	μA
Input Resistance	$T_{A} = 25^{\circ}C, V_{S} = \pm 20V$	1.0	6.0		0.3	2.0		0.3	2.0		MΩ
	$T_{AMIN} \le T_A \le T_{AMAX},$	0.5									MΩ
	$V_{\rm S} = \pm 20 V$										
Input Voltage Range	T _A = 25°C							±12	±13		V
	$T_{AMIN} \le T_A \le T_{AMAX}$				±12	±13					V

Parameter	Conditions	LM741A			LM741			LM741C			Units
		Min	Тур	Мах	Min	Тур	Max	Min	Тур	Max	
Large Signal Voltage Gain	$T_A = 25^{\circ}C, R_L \ge 2 k\Omega$										
	$V_{S} = \pm 20V, V_{O} = \pm 15V$	50									V/mV
	$V_{S} = \pm 15V, V_{O} = \pm 10V$				50	200		20	200		V/mV
	$T_{AMIN} \leq T_A \leq T_{AMAX},$										
	$R_L \ge 2 k\Omega$,										
	$V_{S} = \pm 20V, V_{O} = \pm 15V$	32									V/mV
	$V_{S} = \pm 15V, V_{O} = \pm 10V$				25			15			V/mV
	$V_{S} = \pm 5V, V_{O} = \pm 2V$	10									V/mV
Output Voltage Swing	$V_{\rm S} = \pm 20 V$										
	$R_L \ge 10 \ k\Omega$	±16									V
	$R_L \ge 2 k\Omega$	±15									V
	$V_{\rm S} = \pm 15 V$										
	$R_L \ge 10 \ k\Omega$				±12	±14		±12	±14		V
	$R_L \ge 2 k\Omega$				±10	±13		±10	±13		V
Output Short Circuit	T _A = 25°C	10	25	35		25			25		mA
Current	$T_{AMIN} \le T_A \le T_{AMAX}$	10		40							mA
Common-Mode	$T_{AMIN} \le T_A \le T_{AMAX}$										
Rejection Ratio	$R_{S} \le 10 \text{ k}\Omega, V_{CM} = \pm 12V$				70	90		70	90		dB
	$R_{S} \le 50\Omega, V_{CM} = \pm 12V$	80	95								dB
Supply Voltage Rejection	$T_{AMIN} \le T_A \le T_{AMAX},$										
Ratio	$V_{\rm S} = \pm 20$ V to $V_{\rm S} = \pm 5$ V										
	$R_{S} \le 50\Omega$	86	96								dB
	$R_{s} \le 10 \text{ k}\Omega$				77	96		77	96		dB
Transient Response	T _A = 25°C, Unity Gain										
Rise Time			0.25	0.8		0.3			0.3		μs
Overshoot			6.0	20		5			5		%
Bandwidth (Note 6)	T _A = 25°C	0.437	1.5								MHz
Slew Rate	T _A = 25°C, Unity Gain	0.3	0.7			0.5			0.5		V/µs
Supply Current	$T_A = 25^{\circ}C$					1.7	2.8		1.7	2.8	mA
Power Consumption	$T_A = 25^{\circ}C$										
	$V_{\rm S} = \pm 20 V$		80	150							mW
	$V_{\rm S} = \pm 15 V$					50	85		50	85	mW
LM741A	$V_{\rm S} = \pm 20 V$										
	$T_A = T_{AMIN}$			165							mW
	$T_A = T_{AMAX}$			135							mW
LM741	$V_{\rm S} = \pm 15 V$										
	$T_A = T_{AMIN}$					60	100				mW
	$T_A = T_{AMAX}$					45	75				mW

Note 2: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

LM741

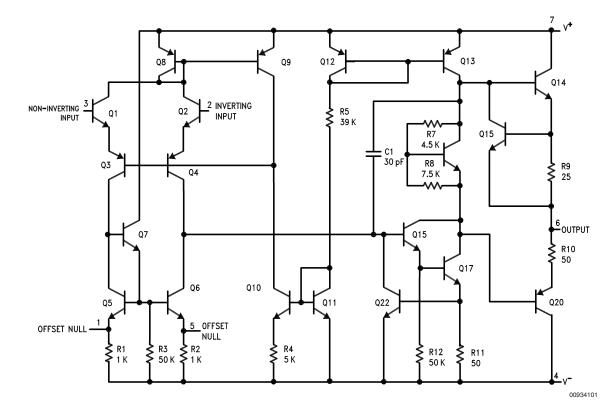
LM741

Electrical Characteristics (Note 5) (Continued)

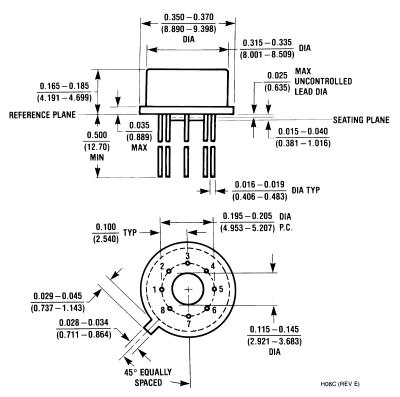
Note 3: For operation at elevated temperatures, these devices must be derated based on thermal resistance, and T_j max. (listed under "Absolute Maximum Ratings"). $T_j = T_A + (\theta_{jA} P_D)$.

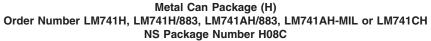
Thermal Resistance	Cerdip (J)	DIP (N)	HO8 (H)	SO-8 (M)	
θ_{jA} (Junction to Ambient)	100°C/W	100°C/W	170°C/W	195°C/W	
θ_{jC} (Junction to Case)	N/A	N/A	25°C/W	N/A	

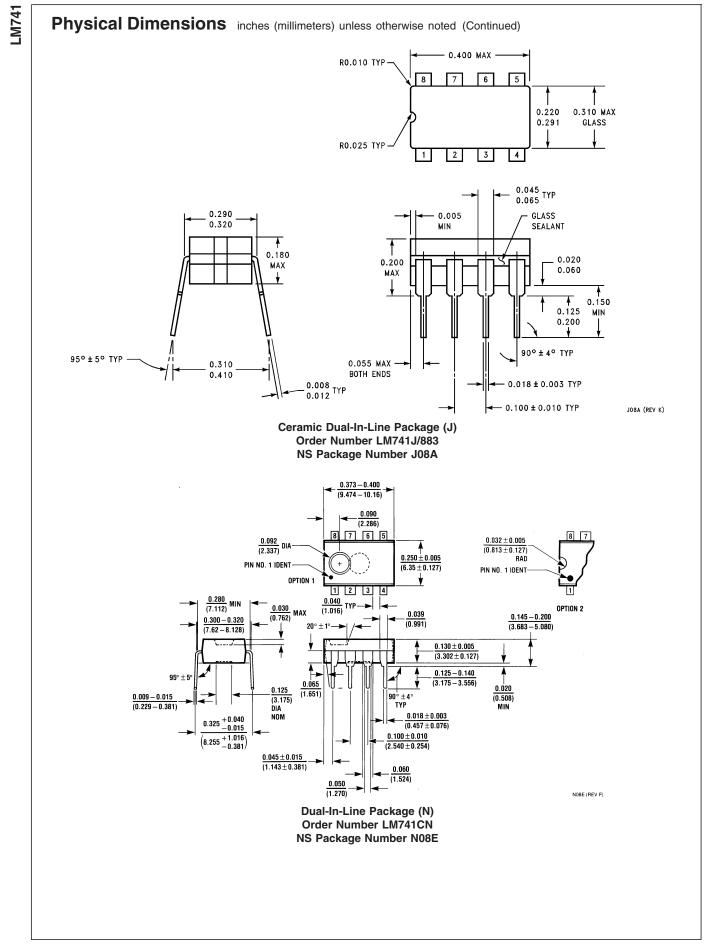
Note 4: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

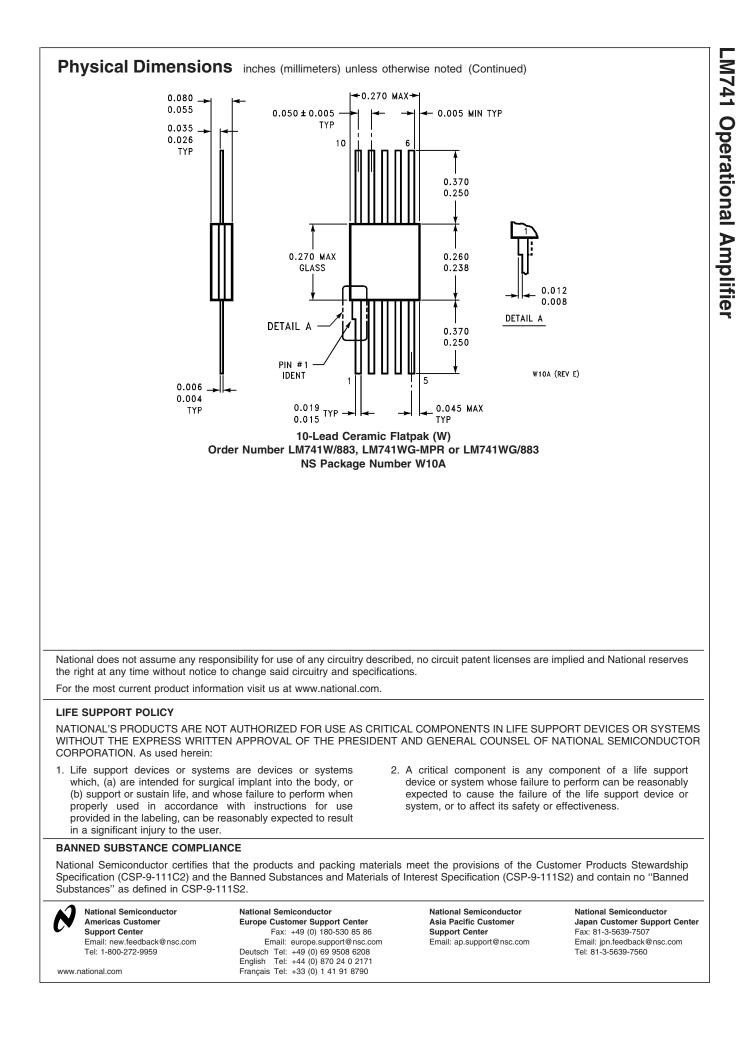

Note 5: Unless otherwise specified, these specifications apply for $V_S = \pm 15V$, $-55^{\circ}C \le T_A \le +125^{\circ}C$ (LM741/LM741A). For the LM741C/LM741E, these specifications are limited to $0^{\circ}C \le T_A \le +70^{\circ}C$.

Note 6: Calculated value from: BW (MHz) = 0.35/Rise Time(μ s).


Note 7: For military specifications see RETS741X for LM741 and RETS741AX for LM741A.


Note 8: Human body model, 1.5 k Ω in series with 100 pF.


Schematic Diagram



Physical Dimensions inches (millimeters) unless otherwise noted

