
Creating Fast, Responsive and Energy-Efficient

Embedded Systems
using the Renesas RL78 Microcontroller

Alexander G. Dean
North Carolina State University

James M. Conrad
University of North Carolina at Charlotte

Micri�m Press
1290 Weston Road, Suite 306
Weston, FL 33326
USA

www.micrium.com

Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where
Micri�m Press is aware of a trademark claim, the product name appears in initial capital letters, in all capital letters, or
in accordance with the vendor’s capitalization preference. Readers should contact the appropriate companies for more
complete information on trademarks and trademark registrations. All trademarks and registered trademarks in this book
are the property of their respective holders.

Copyright © 2012 by Alexander G. Dean and James M. Conrad except where noted otherwise. Published by Micri�m
Press. All rights reserved. Printed in the United States of America. No part of this publication may be reproduced or dis-
tributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of
the publisher; with the exception that the program listings may be entered, stored, and executed in a computer system, but
they may not be reproduced for publication.

The programs and code examples in this book are presented for instructional value. The programs and examples have
been carefully tested, but are not guaranteed to any particular purpose. The publisher and content contributors do not
offer any warranties and does not guarantee the accuracy, adequacy, or completeness of any information herein and
is not responsible for any errors or omissions. The publisher and content contributors assume no liability for damages
resulting from the use of the information in this book or for any infringement of the intellectual property rights of
third parties that would result from the use of this information.

Library of Congress subject headings:

1. Embedded computer systems
2. Real-time data processing
3. Computer software—Development

For bulk orders, please contact Micrium Press at: �1 954 217 2036

ISBN: 978-1-935772-98-9

Please report errors or forward any comments and suggestions to agdean@ncsu.edu

iii

When Renesas asked us to create a book on the RL78 microcontroller family, we jumped
at the chance. It gave us the opportunity to present embedded systems as built upon con-
cepts from critical areas (such as computer architecture and microarchitecture, memory
systems, compilation methods, software engineering, kernels and operating systems, inter-
process communication, and real-time systems) in a way which applies to traditional em-
bedded systems. Many embedded texts present these concepts as they are applied to re-
source-rich PC-like devices such as smartphones — the trade-offs and resulting outcomes
are quite different. We hope we have succeeded.

This book can be used on its own for an Introduction to Embedded Systems class or as
a graduate level Embedded System Design, Analysis and Optimization class. It can also be
used as a supplement in other types of classes where a microcontroller-based implementa-
tion is necessary.

This book would not have been possible had it not been for the assistance of numerous
people. Several students and educators contributed to some of the chapters, including:
Adam Harris (2), Suganya Jebasingh (2, 7), Michael Plautz (8), Sunil Gurram (11), Aswin
Ramakrishnan (11), Vivek Srikantan (12), and Paul Mohan Das (12).

Thanks go to the compositor, Linda Foegen, and especially to June Hay-Harris, Rob
Dautel, and Todd DeBoer of Renesas for their help in getting this book produced and pub-
lished (and for their patience!). Many, many thanks go to the reviewers who offered valu-
able suggestions to make this book better, especially Mitch Ferguson and Anthony Harris.

Alex Dean: I would like to thank Bill Trosky and Phil Koopman for opening the doors
into so many embedded systems through in-depth design reviews. I would like to thank my
students in my NCSU embedded systems courses for bringing their imagination, excite-
ment, and persistence to class projects. I would also like to thank my wife Sonya for shar-
ing her passion of seeking out and seizing opportunities, and our daughters Katherine and
Jacqueline for making me smile every time I leave work to head home. Finally, I would like
to thank my parents for planting the seeds of curiosity in my mind.

Jim Conrad: I would like to personally thank my parents, the Conrads, and my in-laws,
the Warrens, for their continued assistance and guidance through the years while I worked
on books. Also, I would especially like to thank my children, Jay, Mary Beth, and Caroline,
and my wife Stephanie, for their understanding when I needed to spend more time on the
book than I spent with them.

Alexander G. Dean and James M. Conrad
March 2012

Preface

v

The world of MCU-based embedded designs can be divided into those that take advantage
of existing code and MCUs, and those that require leading edge MCU architectures and im-
plementations. Dr. Dean, with assistance from Dr. Conrad, spent more than a year internal-
izing the inner workings and surrounding ecosystem of the newly-developed RL78 archi-
tecture, and have generated a book showcasing the RL78 line which has a level of ultra low
power and performance that has not been seen before. Indeed, by taking the best DNA of
both the ex-NEC 78K MCU core and the Renesas R8C peripherals, and combining them
into a new breed of MCU, the RL78 line enables design approaches that were previously
spread across the low power or high performance camps and inaccessible in one device line.

The authors leverage the capabilities of the RL78 and demonstrate their own expert
grasp of all the dynamics that differentiate successful end solutions from those of the “me-
too” variety. They recognize that successful embedded systems require more than just
good hardware and software engineering. Alex and Jim have masterfully applied RL78 ca-
pabilities to real world challenges using examples, applications and approaches that will
surely empower individuals and teams of designers.

Readers aspire to find books that have the right balance between depth and breadth.
Where there is too much detail, the relevance can be obscured; while a broad brush ap-
proach may trivialize the essence of key topics. This is especially true of books relating to
embedded designs that must achieve a utilitarian purpose. Here, Alex and Jim skillfully
navigate from topic to topic, knowing exactly when to throttle for maximum utility.

Whether you are a university student preparing for the real world, a design engineer
looking for leading edge approaches to time-critical processes, or a manager attempting to
further your risk management techniques, you will find Alex’s approach to embedded sys-
tems to be stimulating and compelling.

Ali Sebt
Renesas
March 8, 2012

Foreword

vii

Preface iii

Foreword v

CHAPTER ONE

Introduction to Embedded Systems 1

1.1 Learning Objectives 1

1.2 Concepts 1

1.2.1 Economics and Microcontrollers 1

1.2.2 Embedded Networks 2

1.3 Typical Benefits of Embedded Systems 2

1.3.1 Greater Performance and Efficiency 3

1.3.2 Lower Costs 3

1.3.3 More Features 4

1.3.4 Better Dependability 4

1.4 Embedded System Functions 4

1.5 Attributes of Embedded Systems 5

1.6 Constraints on Embedded Systems 6

1.7 Designing and Manufacturing Embedded Systems 6

1.8 An Example of an Embedded System: The EIN GreenEval Zigbee Module 7

1.9 Summary of Book Contents 8

1.10 Recap 9

1.11 References 9

CHAPTER TWO

Microcontroller Concepts, Infrastructure, and Interfacing 11

2.1 Learning Objectives 11

2.2 Microcontroller-based Embedded System Hardware Basics 11

Contents

viii CONTENTS

2.3 Infrastructure: Power, Clock, and Reset 12

2.3.1 Power Supply 12

2.3.2 Clock Signal Generation 13

2.3.3 Reset Circuit 15

2.4 Interfacing with Digital Signals 15

2.4.1 General Purpose Digital I/O Basics 15

2.4.1.1 Control Registers 16

2.4.1.2 C Code Support for Accessing Control Registers 16

2.4.1.3 Automatic Code Generation 17

2.4.2 Using LEDs as Outputs 21

2.4.3 Driving a Common Signal with Multiple MCUs 22

2.4.4 Using Switches as Inputs 24

2.4.5 Scanning Matrix Keypads 25

2.4.6 Driving Motors and Coils 27

2.4.7 Voltage Level Shifting 29

2.5 Interfacing with Analog Signals 29

2.5.1 Analog Comparison 30

2.5.2 Multi-bit Analog to Digital Conversion 30

2.5.3 Digital to Analog Conversion 32

2.5.3.1 Resistor Networks 33

2.5.3.2 Pulse Width Modulation 35

2.6 Recap 35

2.7 References 35

2.8 Exercises 35

CHAPTER THREE

RL78 CPU Core and Interrupts 37

3.1 Learning Objectives 37

3.2 CPU Concepts 37

CONTENTS ix

3.3 RL78 CPU Core 40

3.3.1 RL78 Instruction Set Architecture 40

3.3.1.1 Data Types 40

3.3.1.2 Instruction Set 40

3.3.2 Program Memory, Instruction Fetch, and Decode 41

3.3.3 General Purpose and Special Registers 42

3.3.3.1 General Purpose Registers 42

3.3.3.2 Special Registers 42

3.3.4 Data Memory 43

3.3.4.1 Memory Map 44

3.3.4.2 Addressing Modes 45

3.3.5 Arithmetic/Logic Unit 47

3.3.6 Instruction Processing Pipeline 47

3.3.6.1 RL78 Pipeline Structure 48

3.3.6.2 RL78 Pipeline Hazards 48

3.4 Interrupts 49

3.4.1 Breakfast with Polling vs. Interrupts 49

3.4.2 RL78 Interrupt Mechanisms 52

3.4.3 Interrupt Processing Activities 53

3.4.3.1 Hardware Activities Acknowledging an Interrupt 53

3.4.3.2 Software Activities during ISR Execution 54

3.4.3.3 Hardware Activities upon ISR Exit 56

3.4.4 Interrupt Characteristics 56

3.4.4.1 Maskable vs. Non-Maskable Interrupts 56

3.4.4.2 Software Interrupt 56

3.4.5 Controlling the CPU’s Response to Interrupts 57

3.4.5.1 IE: Interrupt Request Acknowledgement Enable or Disable 57

3.4.5.2 ISP1 and ISP0: Interrupt Service Priority 57

3.4.6 Configuration of Maskable Interrupts 57

3.4.6.1 IF: Interrupt Request Flag 58

3.4.6.2 MK: Interrupt Mask Flag 58

3.4.6.3 PR1 and PR0: Interrupt Priority Specification Flags 58

3.4.7 Interrupt Vector Table 58

x CONTENTS

3.4.8 Concurrent Interrupts 60

3.4.8.1 Interrupts Disabled in ISRs 60

3.4.8.2 Interrupts Enabled in ISRs 60

3.4.8.3 Simultaneous Interrupt Requests 62

3.4.9 External Interrupts (Pin Input) 62

3.4.9.1 External Interrupt Example 62

3.5 Recap 64

3.6 References 64

3.7 Exercises 64

CHAPTER FOUR

Software Engineering for Embedded Systems 67

4.1 Learning Objectives 67

4.2 Introduction 67

4.2.1 Risk Reduction 67

4.3 Software Development Stages 68

4.3.1 Development Lifecycle Overview 68

4.3.2 Graphical Representations 71

4.3.3 Requirements 71

4.3.4 Design Before Coding 72

4.3.5 Peer Reviews of Design Artifacts 73

4.3.6 System Architecture and Design Approach 74

4.3.7 Architectural Design to Meet Critical Properties 76

4.3.7.1 Time-Critical Processing 76

4.3.7.2 Safety-Critical Processing 76

4.3.8 Detailed Design 77

4.3.9 Implementation 78

4.3.10 Software Testing 80

4.3.10.1 Do We Know How the System is Built? 81

4.3.10.2 How Many Modules Do We Test at a Time? 82

4.3.10.3 How Do We Keep from Breaking Old Bug Fixes? 83

CONTENTS xi

4.4 Software Development Lifecycle Models 83

4.4.1 Waterfall Process 84

4.4.2 Iterative Process 85

4.4.3 Spiral Process 86

4.4.4 Agile Development Methods 86

4.4.5 Prototyping 87

4.5 Recap 88

4.6 References 88

4.7 Exercises 88

CHAPTER FIVE

Software Development Tools 89

5.1 Learning Objectives 89

5.2 Software Development Toolchain 89

5.2.1 Compiler 90

5.2.2 Assembler 90

5.2.3 Linker 90

5.2.4 Automating the Build Process 92

5.3 Program Debugging 92

5.3.1 Downloading Programs 92

5.3.2 Examining Programs 93

5.3.3 Controlling and Observing Program Execution 93

5.3.3.1 Breakpoints 94

5.3.3.2 Call Stack 95

5.3.4 Examining and Modifying Data 95

5.4 Software Support for the RL78 97

5.4.1 Header Files for RL78 MCUs 97

5.4.2 Code Generator 97

5.4.3 LCD Support and Glyph Library 98

5.5 Recap 101

xii CONTENTS

CHAPTER SIX

C As Implemented in Assembly Language 103

6.1 Learning Objectives 103

6.2 Motivation 103

6.3 What Memory Does a Program Need? 104

6.3.1 Can the Information Change? 104

6.3.2 How Long Does the Information Exist? 105

6.3.3 Example of Memory Allocation 106

6.3.4 Type and Class Qualifiers 107

6.3.4.1 Const 107

6.3.4.2 Volatile 107

6.3.4.3 Static 107

6.3.5 Program Linking 108

6.3.6 C Run-Time Start-Up Module 110

6.3.6.1 Initialize Hardware 110

6.3.6.2 Initialize C or C�� Run-Time Environment 110

6.4 Accessing Data 111

6.4.1 Static Variables 112

6.4.2 Automatic Variables 112

6.4.3 Manipulating and Dereferencing Pointers 113

6.4.4 Accessing Arrays 114

6.4.4.1 1-Dimensional Arrays 115

6.4.4.2 2-Dimensional Arrays 116

6.5 Functions 119

6.5.1 Activation Records 119

6.5.2 Register Use Conventions 122

6.5.3 Calling Subroutines 123

6.5.4 Returning Results 124

6.5.5 Example of Passing Arguments and Returning Results 124

6.6 Control Structures 127

6.6.1 Selection 127

6.6.1.1 If/Else 127

6.6.1.2 Switch 128

CONTENTS xiii

6.6.2 Iteration 131

6.6.2.1 While 131

6.6.2.2 For 132

6.6.2.3 Do/While 133

6.7 Recap 134

6.8 Exercises 135

CHAPTER SEVEN

Converting From the Analog to the Digital Domain 137

7.1 Learning Objectives 137

7.2 Basic Concepts 137

7.2.1 Quantization 137

7.2.1.1 Transfer Function 138

7.2.1.2 Quantization Error 139

7.2.2 Successive Approximation 139

7.2.3 Sampling Frequency Constraints 141

7.3 Converting with the RL78 ADC 142

7.3.1 Enabling the ADC 142

7.3.2 Enabling I/O Pins as Analog Inputs 142

7.3.2.1 Analog Inputs ANI0 Through ANI14 143

7.3.2.2 Analog Inputs ANI16 Through ANI19 144

7.3.3 Selecting Input Channels 144

7.3.3.1 Selecting a Single Input Channel 145

7.3.3.2 Scanning Multiple Input Channels 146

7.3.4 Setting the Reference Voltages 146

7.3.5 Conversion Modes 147

7.3.6 Setting Converter Speed 147

7.3.7 Triggering a Conversion 148

7.3.8 Conversion Speed 149

7.3.9 INTAD Interrupt and Range Checking 150

7.3.10 Reading Conversion Results 151

xiv CONTENTS

7.4 Examples 151

7.4.1 Basic Voltage Monitor 151

7.4.2 Basic Voltage Monitor with Applilet 153

7.4.2.1 CG_ad.h 155

7.4.2.2 CG_ad_user.c 155

7.4.2.3 CG_userdefine.h 155

7.4.2.4 CGain.c 155

7.4.3 Voltage Monitor with Continuous Select Conversion 157

7.4.4 Power Monitor with One-Shot Scan Conversion 157

7.4.4.1 CG_userdefine.h 162

7.4.4.2 CG_main.c 162

7.4.4.3 CG_ad_user.c 163

7.4.5 Forward Reference: Energy Monitor 164

7.5 Recap 165

7.6 Exercises 165

CHAPTER EIGHT

Serial Communications 167

8.1 Learning Objectives 167

8.2 Basic Concepts 167

8.2.1 Connections 167

8.2.2 Synchronous Serial Communication 169

8.2.3 Asynchronous Serial Communication 171

8.2.3.1 Error Prevention and Detection 172

8.2.4 Example Protocols 174

8.2.4.1 CSI 174

8.2.4.2 UART 175

8.2.4.3 I2C 176

8.3 Serial Array Unit Concepts 179

8.3.1 Common SAU Concepts 179

8.3.1.1 Enabling a Channel 179

8.3.1.2 Data Configuration 180

CONTENTS xv

8.3.1.3 Software Control of Output Lines 181

8.3.1.4 Status 181

8.3.1.5 Transfer Speed Control 181

8.3.1.6 Interrupts 182

8.3.2 CSI Mode 182

8.3.2.1 Basic Concepts 182

8.3.2.2 CSI-Specific Configuration 187

8.3.3 UART Mode 188

8.3.3.1 Basic Concepts 188

8.3.3.2 UART-Specific Configuration 188

8.3.3.3 Error Handling 188

8.3.4 Simplified IIC Mode 188

8.3.4.1 Basic Concepts 191

8.4 Serial Communications Device Driver Code 193

8.4.1 General Functions 193

8.4.1.1 SAU Functions 193

8.4.1.2 SAU Function Definitions 193

8.4.2 CSI API 194

8.4.2.1 CSI Functions 194

8.4.2.2 CSI Global Variables 195

8.4.2.3 CSI Function Definitions 196

8.4.3 UART API 201

8.4.3.1 UART Functions 201

8.4.3.2 UART Global Variables 201

8.4.3.3 UART Function Definitions 201

8.4.4 IIC API 206

8.4.4.1 IIC Functions 206

8.4.4.2 IIC Global Variables 206

8.4.4.3 IIC Function Definitions 206

8.4.5 IICA API 211

8.4.5.1 IICA Functions 211

8.4.5.2 IICA Global Variables 212

8.4.5.3 IICA Function Definitions 212

xvi CONTENTS

8.5 Recap 214

8.6 Exercises 214

CHAPTER NINE

Timer Peripherals 217

9.1 Learning Objectives 217

9.2 Basic Concepts 217

9.2.1 Support Circuitry 217

9.2.2 Anemometer Example 218

9.3 Interval Timer 218

9.3.1 Overview 218

9.3.2 Operation 219

9.3.3 Examples 220

9.4 Timer Array Unit 221

9.4.1 Overview 221

9.4.2 Prescaler and Clock Sources 221

9.4.3 Basic Timer Circuitry 225

9.4.4 Independent Channel Operation Modes 225

9.4.4.1 Interval Timer and Square Wave Output 225

9.4.4.2 External Event Counter 226

9.4.4.3 Divider Function 226

9.4.4.4 Input Pulse Interval Measurement 227

9.4.4.5 Measurement of Input Signal Pulse Width 228

9.4.4.6 Delay Counter 229

9.4.5 Simultaneous Channel Operation Modes 230

9.4.5.1 One-Shot Pulse 230

9.4.5.2 Pulse Width Modulation 231

9.5 Examples 233

9.5.1 Energy Meter: Precision Timing for AD Conversions 233

9.5.1.1 CG_timer_user.c 237

9.5.1.2 CG_ad_user.c 237

9.5.1.3 CG_main.c 238

CONTENTS xvii

9.5.2 Anemometer with Pulse Width Measurement 239

9.5.3 Using PWM Mode to Control a Servo Motor 244

9.5.3.1 TAU Configuration 245

9.5.3.2 CG_main.c 247

9.5.3.3 CG_timer_user.c 247

9.5.3.4 CG_ad_user.c 248

9.5.3.5 CG_timer.c 248

9.6 Recap 249

9.7 Exercises 249

CHAPTER TEN

Peripherals for Robustness & Performance 251

10.1 Learning Objectives 251

10.2 Peripherals for Robustness 251

10.2.1 Watchdog Timer 252

10.2.1.1 Structure 253

10.2.1.2 Using the WDT 253

10.2.2 Cyclic Redundancy Check Unit 255

10.2.3 RAM Parity Error Detection 255

10.2.4 Invalid Memory Access Detection 256

10.2.5 RAM & SFR Guard Functions 256

10.2.6 Voltage Detector 257

10.3 Performance 259

10.3.1 Direct Memory Access Controller 259

10.3.2 Multiplier/Accumulator/Divider 260

10.4 Recap 263

10.5 References 263

10.6 Exercises 263

xviii CONTENTS

CHAPTER ELEVEN

Designing Responsive and Real-Time Systems 265

11.1 Learning Objectives 265

11.2 Motivation 265

11.3 Scheduling Fundamentals 267

11.3.1 Task Ordering 268

11.3.2 Task Preemption 269

11.3.3 Fairness and Prioritization 270

11.3.4 Response Time 270

11.3.5 Stack Memory Requirements 272

11.3.6 Interrupts 273

11.4 Task Management 273

11.4.1 Task States 273

11.4.2 Transitions between States 275

11.4.3 Context Switching for Preemptive Systems 276

11.5 Examples of Schedulers 276

11.5.1 A Nonpreemptive Dynamic Scheduler 276

11.5.1.1 Implementation 282

11.5.1.2 Example Application using RTC Scheduler 285

11.5.2 A Preemptive Dynamic Scheduler 286

11.5.2.1 Yielding the Processor to Eliminate Busy Waiting 286

11.5.2.2 Yielding the Processor to Run Code in a Task Periodically 287

11.5.2.3 Signaling another Task to Run 288

11.5.2.4 Sending Data to another Task 290

11.6 Sharing Data Safely 291

11.6.1 Data Shared Objects 292

11.6.2 Function Reentrancy 293

11.6.3 High-Level Languages and Atomicity 294

11.6.4 Shared-Data Solutions and Protection 295

11.6.4.1 Disable Interrupts 296

11.6.4.2 Use a Lock 296

CONTENTS xix

11.6.4.3 RTOS-Provided Semaphore 297

11.6.4.4 RTOS-Provided Messages 299

11.6.4.5 Disable Task Switching 299

11.7 Analysis of Response Time and Schedulability 300

11.7.1 Assumptions and Task Model 300

11.7.2 Fixed Task Priority 301

11.7.2.1 Rate Monotonic Priority Assignment—RMPA 301

11.7.2.2 Rate Monotonic Priority Assignment with Harmonic Periods 303

11.7.2.3 Deadline Monotonic Priority Assignment—DMPA 304

11.7.3 Response Time Analysis 305

11.7.4 Loosening the Restrictions 305

11.7.4.1 Supporting Task Interactions 306

11.7.4.2 Supporting Aperiodic Tasks 306

11.7.5 Dynamic Task Priority 306

11.7.5.1 Supporting Task Interactions 306

11.7.5.2 Supporting Aperiodic Tasks 307

11.7.6 Non-Preemptive Scheduling Approaches 307

11.8 Recap 308

11.9 References 308

11.10 Exercises 308

CHAPTER TWELVE

Optimizing for Program Speed 311

12.1 Learning Objectives 311

12.2 Basic Concepts 311

12.2.1 Correctness before Performance 312

12.2.2 Reminder: Compilation is Not a One-to-One Translation 312

12.3 An Example Program to Optimize 313

xx CONTENTS

12.4 Profiling—What is Slow? 315

12.4.1 Mechanisms 315

12.4.2 An Example PC-Sampling Profiler for the RL78 316

12.4.2.1 Sampling the PC 316

12.4.2.2 Finding the Corresponding Code Region 318

12.4.2.3 Modifications to the Build Process 320

12.4.2.4 Analyzing Results 321

12.5 Example: Optimizing the Distance and Bearing Calculation 321

12.5.1 First Measurement: 3220 ms 321

12.5.2 First Optimization 322

12.5.3 Second Measurement: 1430 ms 322

12.5.4 Second Optimization 323

12.5.5 Third Measurement: 1300 ms 323

12.5.6 Third Optimization 323

12.5.7 Fourth Measurement: 600 ms 325

12.5.8 Fourth Optimization 326

12.5.9 Fifth Measurement: 230 ms 328

12.6 Guidance for Code Optimization 329

12.6.1 Your Mileage Will Vary 330

12.6.2 Reduce Run-time Work 330

12.6.2.1 Precompute before Run-time 330

12.6.2.2 Quit Early and Often 331

12.6.2.3 Arrange Data to Minimize the Work 331

12.6.3 Do the Remaining Run-time Work Efficiently 331

12.6.3.1 Use a Better Algorithm 331

12.6.3.2 Avoid Double-precision Floating Point Math 331

12.6.3.3 Avoid Single-precision Floating Point Math, Too 332

12.6.3.4 Use Approximations 332

12.6.4 Use MCU-Appropriate Data 332

12.6.4.1 Use the Right Memory Model 332

12.6.4.2 Data Size 332

12.6.4.3 Signed vs. Unsigned Data 333

12.6.4.4 Data Alignment 333

CONTENTS xxi

12.6.5 Help the Compiler do a Good Job 333

12.6.5.1 Basics: ISA Familiarity, Tweak/Compile/Examine/Repeat 333

12.6.5.2 What Should the Compiler be Able to Do on Its Own? 333

12.6.5.3 Don’t Handcuff the Compiler 334

12.7 Recap 334

12.8 References 335

12.9 Exercises 335

CHAPTER THIRTEEN

Power and Energy Optimization 337

13.1 Learning Objectives 337

13.2 Basic Concepts 337

13.2.1 Power and Energy 337

13.2.2 Digital Circuit Power Consumption 338

13.2.3 Basic Optimization Methods 339

13.3 RL78 Clock Control 340

13.3.1 Clock Sources 340

13.3.2 Clock Source Configuration 341

13.3.3 Oscillation Stabilization 342

13.3.4 High-Speed On-Chip Oscillator Frequency Selection 342

13.4 RL78 Standby Modes 343

13.4.1 Halt 344

13.4.2 Stop 345

13.4.3 Snooze 346

13.5 RL78 Power and Energy Characteristics 346

13.6 Power and Energy Optimization 348

13.6.1 Power Analysis 349

13.6.2 Energy Analysis 349

13.6.2.1 Reducing Sensor Energy Use 349

13.6.2.2 Reducing Bluetooth Power Energy Use 350

xxii CONTENTS

13.6.2.3 MCU Clock Speed Reduction 350

13.6.3 Standby Mode Energy 352

13.6.3.1 Shutting Off Bluetooth When Idle 352

13.6.3.2 Halt Mode 352

13.6.3.3 Stop Mode 354

13.7 Recap 354

13.8 References 355

13.9 Exercises 355

Index 357

1

1.1 LEARNING OBJECTIVES

In this chapter the reader will learn:

� What an embedded system is
� Why to embed a computer
� What functions and attributes embedded systems need to provide
� What constraints embedded systems have

1.2 CONCEPTS

An embedded system is an application-specific computer system which is built into a
larger system or device. Using a computer system rather than other control methods (such
as non-programmable logic circuits, electro-mechanical controls, and hydraulic control)
offers many benefits such as sophisticated control, precise timing, low unit cost, low de-
velopment cost, high flexibility, small size and low weight. These basic characteristics can
be used to improve the overall system or device in various ways:

� Improved performance
� More functions and features
� Reduced cost
� Increased dependability

Because of these benefits, billions of microcontrollers are sold each year to create embed-
ded systems for a wide range of products.

1.2.1 Economics and Microcontrollers

Microcontrollers are remarkably inexpensive yet offer tremendous performance. The mi-
croprocessor for a personal computer may cost $100 or more, while microcontrollers typi-
cally cost far less, starting at under $0.25. Why is this so?

Introduction to Embedded Systems

Chapter OneChapter One

2 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

Microcontrollers provide extremely inexpensive processing because they can leverage
economies of scale. MCUs are programmable in software, so a chipmaker can design a
single type of MCU which will satisfy the needs of many customers (when combined with
their application-specific software). This reduces the per-chip cost by amortizing the de-
sign costs over many millions of units.

The cost of an integrated circuit (such as a microcontroller or a microprocessor) de-
pends on two factors: non-recurring engineering (NRE) cost and recurring cost. The
NRE cost includes paying engineers to design the integrated circuit (IC) and verify
through simulation and prototyping that it will work properly. The recurring cost is in-
curred by making each additional IC, and includes raw materials, processing, testing and
packaging.

The IC’s area is the major factor determining this recurring cost. As the IC design gets
smaller, more copies of the circuit will fit onto a silicon wafer, reducing the recurring cost.
Microcontrollers are much smaller than microprocessors for personal computers, so they
will cost less (given the same number of ICs sold). The NRE cost must be divided across
each IC sold. As the number of ICs sold rises, the NRE adder falls, and so each IC’s price
falls as well. Low-volume chips are more expensive than high-volume chips.

1.2.2 Embedded Networks

Some embedded systems consist of multiple embedded computers communicating
across an embedded network, and offer further benefits. Each embedded computer on the
network shares a set of wires to communicate with in which a communication protocol is
utilized to share the wires, instead of dedicating a set of communication wires for each pos-
sible route. Several advantages come from having fewer wires:

� Lower parts cost, as fewer wires are needed.
� Lower labor costs, as it is faster to assemble.
� Greater reliability, as it has fewer connections to fail.

Other advantages come from allowing separate nodes to share information. New features
may be possible, or the system efficiency may be improved through better coordination of
activities among different nodes.

1.3 TYPICAL BENEFITS OF EMBEDDED SYSTEMS

As an example, let’s examine how embedded systems have affected automobiles. A typical
modern car has dozens of microcontrollers embedded within it. Let’s see why.

CHAPTER 1 / INTRODUCTION TO EMBEDDED SYSTEMS 3

1.3.1 Greater Performance and Efficiency

Computer control of automobile engines lowers pollution and increases fuel efficiency, re-
ducing operating costs.

Burning gasoline with air in internal combustion engines is a tricky business if we
want to maximize efficiency yet minimize pollution. The main factor affecting emissions is
the ratio of air mass to fuel mass. The ideal ratio is 14.7 to 1, and the catalytic converter is
designed to operate most efficiently at this ratio. If there is too little air (a rich mix), then
excessive carbon monoxide (CO) and hydrocarbons (HC) will be produced. If there is too
much air (a lean mix), then large amounts of oxides of nitrogen (NOx) will be created. So
we would like for each fuel injector to add just the right amount of fuel. This depends on
the mass of the air inside the cylinder, which depends on factors such as air temperature
and air pressure. These in turn depend on altitude and weather, as well as whether the en-
gine is warmed up or not.

Another factor is the timing of the sparkplug firing. If it fires early, then there is more
time for combustion within the cylinder before the exhaust valve opens. This raises the av-
erage temperature within the cylinder and changes the combustion process, affecting CO,
HC, and NOx concentrations.

It would be quite impractical to design a mechanical control system that considered all
of these factors and opened the fuel injectors at just the right instant for the right amount of
time. Thankfully, an inexpensive microcontroller is quite effective at these kinds of calcu-
lations and control.

1.3.2 Lower Costs

There are various ways in which an embedded system can reduce the costs associated with
a device.

� Component costs: Embedded software can compensate for poor signal quality, al-
lowing the use of less-expensive components. For example, a low-cost pressure sensor
may be very temperature-dependent. If ambient temperature information is already
available, then it is a simple matter to compensate for the temperature-induced error.

� Manufacturing costs: Many vehicles use the Control Area Network (CAN) pro-
tocol to communicate across an in-car network. The embedded network reduces
assembly and parts costs because of the simpler wiring harness.

� Operating costs: As mentioned above, an embedded system enables automobile
engines to operate more efficiently, reducing the amount of gasoline needed and
hence lowering operating costs.

� Maintenance costs: Some vehicles predict oil life by monitoring engine use his-
tory, notifying the driver when an oil change is needed.

4 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

1.3.3 More Features

An MCU running application-specific software offers tremendous opportunities for fea-
tures and customization. These features can make your company’s products stand out from
the competition.

� Cruise control keeps the car running at the same speed regardless of hills, wind,
and other external factors.

� Smart airbags reduce injuries by adjusting inflation speed based on passenger
weight.

� Power seats move to each driver’s preferred position automatically, based on
whose keyless entry fob was used to open the car.

� Headlights and interior lights shut off automatically after a time delay if the car
is not running, and prevent the lights from draining the battery.

1.3.4 Better Dependability

Embedded systems and networks offer many opportunities to improve dependability.

� An engine controller (and other controllers) can provide various “limp-home
modes” to keep the car running even if one or more sensors or other devices fail.

� A warning of an impending failure can be provided.
� Diagnostic information can be provided to the driver or service personnel, saving

valuable trouble-shooting time.

1.4 EMBEDDED SYSTEM FUNCTIONS

There are several common functions which embedded systems typically provide.

� Control systems monitor a process and adjust an output variable to keep the
process running at the desired set point. For example, a cruise control system may
increase the throttle setting if the car’s speed is lower than the desired speed, and
reduce it if the car is too fast.

� There is often sequencing among multiple states. For example, a car engine goes
through multiple states or control modes when started. During Crank and Start,
the fuel/air mix is lean and depends on the engine coolant temperature. Once the
engine has started, the controller switches to the Warm-Up mode in order to raise
the engine and exhaust system temperatures to their ideal levels. Here the fuel/air
mixture and ignition timing are adjusted, again based in part on the engine coolant

CHAPTER 1 / INTRODUCTION TO EMBEDDED SYSTEMS 5

temperature. When the engine has warmed up it can switch into Idle mode. In this
mode the controller seeks to minimize the engine’s speed, yet still run smoothly
and efficiently despite changes in loads due to air conditioning, power steering,
and the electrical system.

� Signal processing modifies input signals to eliminate noise, emphasize signal
components of interest, and compensate for other factors. For example, a hands-
free speakerphone interface may use multiple microphones, beam-forming, and
active noise cancellation to filter out low-frequency road noise. Other sensors may
have spark-plug noise filtered out.

� Communications and networking enable different devices on the same network
to exchange information. For example, the engine controller may need to send a
message indicating speed. To do this, the speed value must be formatted according
to the communication protocol and then loaded into the network interface periph-
eral for transmission.

1.5 ATTRIBUTES OF EMBEDDED SYSTEMS

Embedded systems are designed so that the resulting device behaves in certain desirable ways.

� Embedded systems need to respond to events which occur in the environment,
whether a user presses a button or a motor overheats. A system which is not suffi-
ciently responsive is not likely to be a successful product. For example, when we
press a channel select button for the radio, we would like for it to respond within
some reasonable time.

� For real-time systems, the timing of the responses is critical because late answers
are wrong answers. Igniting the fuel in a cylinder is time-critical because bad tim-
ing can damage or destroy engine components (to say nothing of reducing power,
or the efficiency and pollution concerns mentioned previously).

� Embedded systems typically require sophisticated fault handling and diagnos-
tics to enable safe and reliable operation. Often the fault handling code is larger
and more complex than the normal operation code. It is easy to design for the
“everything goes right and works fine” case. It is far more difficult to determine
how to handle the exceptional cases. What is likely to fail? Which failures can lead
to dangerous conditions? How should the system handle failures? How will you
test that the system handles the failures correctly?

� Embedded systems may be expected to operate independently for years without
operator attention such as adjustment or resetting. The system is expected to operate
robustly and always work. Given that it is very difficult and expensive to write per-
fect, bug-free software, developers build in mechanisms to detect faulty behavior and
respond, perhaps by restarting the system.

6 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

1.6 CONSTRAINTS ON EMBEDDED SYSTEMS

Embedded systems often have constraints which limit the designer’s options and can lead
to creative and elegant solutions. These constraints are typically different from those for
general-purpose computers.

� Cost is a common constraint. Many applications which use embedded systems are
sold in very competitive markets, in which price is a major factor. Often a manu-
facturer will hire subcontractors to design and build individual sub-systems. This
then allows manufacturer to pit potential subcontractors against each other, keep-
ing prices down.

� There may be size and weight limits for portable and mobile applications. An em-
bedded system for an automotive remote keyless entry transmitter must fit into a
small fob on a key ring which fits easily into a pocket. Both the transmitter and the
receiver must not be too heavy. A heavier car will have worse acceleration, brak-
ing, cornering, and fuel efficiency. Aircraft and spacecraft are especially sensitive
to weight since a heavier craft requires more fuel to achieve the same range.

� There may be limited power or energy available. For example, a battery has a lim-
ited amount of energy, while a solar cell generates a limited amount of power.
High temperatures may limit the amount of cooling available, which will limit the
power which can be used.

� The environment may be harsh. Automotive electronics under the hood of a car
need to operate across a wide range of temperatures (�40°C to 125°C, or �40°F
to 193°F), while withstanding vibrations, physical impact, and corroding salt
spray. Spark plugs generate broadband radio frequency energy which can interfere
with electronics.

1.7 DESIGNING AND MANUFACTURING EMBEDDED SYSTEMS

Embedded systems are designed with a central microcontroller and other supporting
electronic components mounted on a printed circuit board (PCB). PCBs provide the
means to connect these integrated circuits to each other to make an operational system.
The PCB provides structural support and the wiring of the circuit. The individual wires
on the PCB are called traces and are made from a flat copper foil. While many circuit de-
signs may use the same standard components, the PCB is often a custom component for
a given design.

Designing a PCB requires a completed schematic for the circuit. This schematic is
sometimes different than the schematic seen in textbooks. It often contains extra informa-
tion about the components and construction of the board. For example, a textbook
schematic may only show a battery for the power supply, while the production schematic

CHAPTER 1 / INTRODUCTION TO EMBEDDED SYSTEMS 7

would show the battery case, the number of cells, the rating of the battery, and the manu-
facturers of the components.

From the schematic, a designer will use their computer-aided design tools to identify
the size of the PCB, and then place the electronic components on their board drawing. The
designer will also place the wiring between the components on the PCB.

The physical PCB is manufactured from a fiberglass-resin material that is lightweight
and inexpensive. A manufacturer will add copper wiring traces to the surfaces of the board
and the appropriate insulation and white silk screening. The final manufacturing steps are
applying solder, placing the components, and heating/cooling the solder. Figure 1.1 shows
an example of a finished board.

Figure 1.1 EIN GreenEval Zigbee Module.

The completed boards are electrically tested for functionality. Any board failing the
test is inspected in more detail to find the problems. These boards are repaired to increase
the passing rate acceptable to the manufacturer. The boards are wrapped in anti-static ma-
terials and shipped to the next location for the next stage of production, or immediately in-
stalled in a mechanical enclosure (like the mechanical shell of a mobile phone).

1.8 AN EXAMPLE OF AN EMBEDDED SYSTEM:
THE EIN GREENEVAL ZIGBEE MODULE

The EIN GreenEval Zigbee1 module is one example of a Renesas MCU-based embedded
system. This device has thirty-four digital I/O lines that are controlled by a Zigbee radio.

8 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

Figure 1.1 shows the main board of the EIN GreenEval Zigbee Module. As seen in this
example, taking off the shielding provides a good look at the internal circuitry. Six of the
main components are visible. Starting from left to right; the large cylindrical device hang-
ing off the left edge of the board is an antenna for the 2.4 GHz radio.

The chip labeled 5PE20V (the small 8-pin chip at the top left of the image) is a page-
erasable serial Flash chip.2 This chip communicates with the Renesas MCU through the
SPI bus. This chip is also used to hold more data than the MCU. Since the MCU can only
handle 8 kilobytes of data, it is quickly filled. This extra flash chip can hold an additional
256 kilobytes.

The square chip on the lower left is a Skyworks 2.4 GHz Front-End Module (FEM),3

which amplifies and switches radio signals between the antenna and the MCU. It is con-
trolled by three output pins of the MCU. One pin controls putting the FEM to sleep to save
power, another pin selects whether the FEM will send or receive data, and the last pin actu-
ally transmits and receives data to and from the FEM.

The large chip in the center is a Renesas R5FF36B3 from the M16C family of chips
with 256 KB � 24 KB of ROM, 20 KB of RAM, and 8 KB of data.4 Thirty-four I/O pins are
used to interface with external pins on the module. This processor is running at 4 MHz
(controlled by the small metal chip which is actually a temperature compensated crystal
oscillator). This chip has an RF radio built in.

The pins at the far right are a programming and interface header. They are used to com-
municate with and program the Renesas MCU.

1.9 SUMMARY OF BOOK CONTENTS

This book is structured as follows:

� Chapters 2 and 3 present basic microcontroller and interfacing concepts and the
specifics of the RL78 architecture.

� Chapters 4, 5, and 6 show how software is built. At the high level they present soft-
ware engineering concepts and practices. In the middle they show how programs
are compiled and downloaded. Finally, at the low level they show how C code is
implemented in the MCU’s native language.

� Chapters 7, 8, and 9 present how to use peripherals to interface with the environ-
ment and simplify programs.

� Chapter 13 presents additional peripherals which can increase system robustness
(the watchdog timer and voltage brown-out detector) and accelerate data transfer
speed (direct memory access).

� Chapters 11, 12, and 13 present how to optimize embedded software for pre-
dictable responsiveness, speed, energy, and power.

CHAPTER 1 / INTRODUCTION TO EMBEDDED SYSTEMS 9

1.10 RECAP

An embedded system is an application-specific computer system which is built into a
larger system or device. Using a computer system enables improved performance, more
functions and features, lower cost, and greater dependability. With embedded computer
systems, manufacturers can add sophisticated control and monitoring to devices and other
systems while leveraging the low-cost microcontrollers running custom software.

1.11 REFERENCES

Envisionnovation. EININC Products. Ontario: Envisionnovation, 2010. Web. Accessed at http://www.eininc.

net/products.html

Numonyx MP25PE20 datasheet http://www.micron.com//get-document/?documentId=5965&file=M25PE20_

10.pdf

RENESAS MCU: M16C Family/M16C/60 SERIES. Renesas Electronics America, Inc., 2010. Web. Accessed

at http://am.renesas.com/products/mpumcu/m16c/m16c60/m16c6b/m16c6b_root.jsp

SKYWORKS Solutions, Inc. SKYWORKS Products: SKY65352–11. Woburn, MA: SKYWORKS Solutions,

Inc., 2009. Web. Accessed at http://www.skyworksinc.com/Product.aspx?ProductID�752

11

2.1 LEARNING OBJECTIVES

Embedded systems consist of computers which are embedded in larger systems. Additional
circuitry such as power supplies, clock generators, and reset circuits, are required for the
computer to work. Transducers (devices that convert one type of energy into another) are also
used to connect microcontrollers to the outside world. There are two classes of transducers:
inputs and outputs. Inputs (sensors) include devices such as switches, temperature sensors,
keypads, and buttons. Output transducers include devices such as LEDs, motors, and coils.

In this chapter the reader will learn general information about:

� The infrastructure needed for powering, clocking, and controlling any embedded
system

� Configuring general purpose input/output ports using software
� Using digital signals to control LEDs and motors, and to monitor switches and

keypads
� Converting analog signals to digital (and back) to interface with analog devices

2.2 MICROCONTROLLER-BASED EMBEDDED SYSTEM HARDWARE BASICS

Figure 2.1 shows an example of the components in a generic microcontroller-based em-
bedded system. The gray box shows what is contained in (integrated with) a typical micro-
controller, but this is not definitive for every MCU. In this chapter we will examine several
of these components. In the next chapter we will examine the details of the processor itself.

� A power supply is necessary to power the circuit.
� An oscillator is required to drive the system’s digital logic.
� A processor is required to execute program instructions.
� A reset circuit is required to ensure the processor starts correctly on power-up or

when a reset is requested.
� Nonvolatile memory is required to hold the program and fixed data.

Microcontroller Concepts, Infrastructure,
and Interfacing

Chapter TwoChapter Two

12 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

� Volatile memory is typically used to hold data which changes as the program runs.
� Interface peripherals communicate with external devices to sense the values of in-

put signals and control the output signals.
� Internal peripheral devices provide additional functions without the need for exter-

nal interfacing.

2.3 INFRASTRUCTURE: POWER, CLOCK, AND RESET

2.3.1 Power Supply

A microcontroller requires electrical power to run. The MCU data manual indicates the
range of acceptable voltages and typical current drawn across those voltages, often under
the title of Recommended Operating Conditions or Electrical Characteristics. For exam-

Reset
Controller

Oscillator

Power
Supply

External Devices

Interface Peripherals

Internal Peripherals
Interrupt
Controller

Processor

Volatile Memory (RAM)

Variable
Data

Nonvolatile Memory (Flash)

Program
Instructions

Fixed
Data

Figure 2.1 Block diagram of a generic embedded system.

CHAPTER 2 / MICROCONTROLLER CONCEPTS, INFRASTRUCTURE, AND INTERFACING 13

ple, the RL78G13 MCU has a recommended operating voltage range from 1.6 V to 5.5 V.
Below this range the MCU is not guaranteed to operate correctly. Faults may come from
transistors switching too slowly, capacitors charging or discharging too slowly, memory
cells losing their data, and other such malfunctions. Above this range the MCU will draw
excessive power and grow hotter than necessary. Continuing to higher voltages and cur-
rents, one reaches the Absolute Maximum Ratings (also detailed in the data manual). Be-
yond these ratings, the IC will be damaged due to excessive current, excessive heat, insu-
lation (oxide) breakdown and other such faults.

To ensure that the chip will operate as expected, a system should never be designed to
operate too close to the absolute maximum ratings. The data manual indicates that the Ab-
solute Maximum voltage for any pin is 6.5 V. Fluctuations in the power supply may cause
the values to go over the absolute maximum ratings of the chip, which can damage the mi-
croprocessor. The power supply should be designed with a safety factor to account for
these fluctuations.

Within the safe operating range, the clock speed at the lower voltages may be limited.
Oscillators may only run at low frequencies with lower voltages. Also, transistor switching
speed falls as Vsupply � Vthreshold falls, so a longer clock period is needed to allow signals to
propagate through the slower logic. For example, the RL78G13�s main clock system oscil-
lator can run at up to 4.0 MHz with a 1.6 to 1.8 V supply, up to 8 MHz with a supply above
1.8 V but below 2.7 V, and up to 20 MHz with a supply above 2.7 V. MCUs typically have
built-in circuitry for dividing or multiplying the oscillator frequency to derive a different fi-
nal operating frequency for the internal logic.

2.3.2 Clock Signal Generation

Microprocessors are synchronous circuits that require a clock to work. This clock allows
data to be pushed through the stages of the instruction pipeline and helps the microproces-
sor coordinate tasks. When selecting a clock generator, the microcontroller datasheet must
be used. This datasheet gives the values of the different clocks that a particular micro-
processor can accept.

There are two major types of clock signal generators: those that work on purely elec-
trical principles, and those that work on mechanical vibration (resonance of a quartz ele-
ment). The signal generators for the electrical driven clock can be simple resistor-capacitor
(RC) or inductor-capacitor (LC) circuits. Generally, these clocks aren’t very accurate on
their own, and their design can become quite complicated when precision is required.
Many microprocessors offer signal generators with an internal clock that consists of an
RC circuit inside the chip, which can be configured. These clocks should not be used when
precise timing is required. Figure 2.2 shows the connection of an RC oscillator to the clock
input of a microprocessor.

14 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

Clock signal generators that are mechanically driven use a quartz crystal to produce a
steady signal. These oscillators rely on the piezoelectric effect of the crystal. This method
of clocking is accurate (around 30 parts per million or about 0.003% error), cheap, and
widely available. Generally, two small load capacitors are required between each lead of
the crystal and ground, as shown in Figure 2.3. The values of these capacitors are based on
the crystal characteristics and are listed in the crystal’s datasheet.

IN/INI3/SSI00/CMP1_0
P3_4/SCS/SCA/CMP1_1

P3_5/SSCK/SCL/CMP1_2
P3_7/CNIR0/SSO/TXD1

19
20
1
2

16
9
6
4

8
3
7

P4_2/VREF
P4_5/INT0/HXD1

P4_6/XIN
P4_7/XOUT

MODE
RESET

VCC/AVCC

U3

GND

VCC

C1

R
3

Figure 2.2 RC Clock Generator

/INI3/SSI00/CMP1_0
4/SCS/SDA/CMP1_1

5/SSCK/SCL/CMP1_2
7/CNTR0/SSO/TXD1

19
20
1
2

16
9
6
4

8
3
7

P4_2/VREF
P4_5/INT0/HXD1

P4_6/XIN
P4_7/XOUT

MODE
RESET

VCC/AVCC

U4

G
N

DC
3

G
N

DC
2

Y
1

Figure 2.3 Connection of a crystal or ceramic resonator clock generator.

Ceramic resonators are growing in popularity for use as a clock generator. The resonators
use a piezoelectric ceramic element that is not as accurate as quartz, yet more accurate than
RC circuits. They may also contain the appropriate load capacitors built in so they do not
require any additional components to work.

CHAPTER 2 / MICROCONTROLLER CONCEPTS, INFRASTRUCTURE, AND INTERFACING 15

External clock generator integrated circuits can also be used. These clocks use a quartz
or RC circuit as a resonant oscillator, but also contain an amplifier. The frequency can be
changed by reprogramming the clock generator. The duty cycle may also be selectable for
use in cases where a 50 percent duty cycle cannot be used. These circuits are usually more
expensive when compared to other oscillators.

2.3.3 Reset Circuit

Resetting a microcontroller puts it in a predictable state and stops all of its operations. This is
needed for two reasons. First, when a system is powered up, it takes time for the supply volt-
age to rise to the recommended operating range. The MCU needs to be held in reset until the
voltage is high enough for the circuit to operate correctly. Second, the processor may need to
be reset if certain serious conditions are detected, or if the user presses a reset switch.

The processor needs to start off in a predictable state. For example, the program
counter must hold the address of the first instruction in the program. It is extremely helpful
to have the other aspects of the system configured in a safe and well-defined way (e.g., in-
terrupts disabled, outputs, and unnecessary peripherals disabled).

When the reset signal is asserted, the microprocessor loads predefined values into the
system control registers. All microprocessors designate a pin that is solely used for reset-
ting the chip. Characteristics such as polarity (active high or active low) and minimum du-
ration are specific to the microprocessor being used and can be found in the manufacturer’s
datasheet.

2.4 INTERFACING WITH DIGITAL SIGNALS

2.4.1 General Purpose Digital I/O Basics

Embedded systems consist of computers embedded in larger systems. The processor needs
to sense the state of the larger system and environment, and control output devices. The
most basic way to do this is through one or more discrete signals, each of which can be in
one of two states (on or off). General purpose digital I/O ports are the hardware which can
be used to read from or write to the system outside the microcontroller.

The RL78 has multiple I/O ports, numbered starting at P0. Each port typically has
eight bits, with each bit connected to a specific pin on the MCU package. For most ports,
each bit can be configured individually as an input or output, although there are some
limited-function port bits which have partial configurability such as input-only.

A port pin may serve several purposes; for example, one might be used as a general
purpose I/O pin, as an A/D converter input, or as an interrupt input, based on how it is con-
figured. Depending on the purposes these pins serve, they might have extra registers.

16 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

2.4.1.1 Control Registers

There are multiple registers used to control and monitor ports. We can find the details of
these registers in the User’s Manual (Renesas Electronics Corporation 2011) chapter on
Port Functions.

� The Port Mode register (PM) controls whether a particular port bit is an input (se-
lected with 1) or an output (0).

� The Port register (P) holds the data value for the port. For example, if port 0 is con-
figured as all inputs, then reading from register P0 will indicate what binary input
values are present on the pins of port 0. If port 1 is configured as all outputs, writ-
ing to register P1 will cause those binary values to appear on the pins of port 1.

� The Pull-Up resistor option register (PU) controls whether an internal pull-up re-
sistor is connected (selected with 1) to that input bit or not (0).

� The Port Input Mode register (PIM) controls which type of voltage threshold (TTL
or CMOS) is used to determine whether an input is a 1 or a 0. The CMOS thresh-
olds (normal, selected with 0) are proportional to the supply voltage VDD, while
the TTL thresholds (1) are fixed voltages.

� The Port Output Mode register (POM) controls whether an output can be driven up
or down (push-pull mode, selected with 0), or just down (N-channel open-drain,
selected with 1). This is useful for applications such as sharing a bus which may be
driven by other devices.

� The Port Mode Control register (PMC) controls whether an input is used for ana-
log (selected with 1) or digital (0) purposes.

� The Peripheral I/O Redirection register (PIOR) allows certain peripheral signals to
be routed to one of two possible port pins, simplifying circuit design.

2.4.1.2 C Code Support for Accessing Control Registers

The ‘ior5f100le.h’ file has C code constructs that make it easy to access each port with
C code. Each port is defined as a structure and each register of the port is defined as a union
of variables within that structure. An example of how the special function register P0 (the
port register for port 0) is defined as follows.

First, a new data type called __BITS8 is defined. This allows easy C-level access to in-
dividual bits within a byte. Each field in the structure provides access to the corresponding
bit. The C compiler will generate appropriate assembly code to ensure that only the bit of
interest is accessed.

typedef struct {
unsigned char no0:1;
unsigned char no1:1;
unsigned char no2:1;

CHAPTER 2 / MICROCONTROLLER CONCEPTS, INFRASTRUCTURE, AND INTERFACING 17

unsigned char no3:1;
unsigned char no4:1;
unsigned char no5:1;
unsigned char no6:1;
unsigned char no7:1;

} __BITS8;

Second, a union is declared which consists of two components, one of type unsigned char
and the other of type __BITS8. Since a union overlaps all of the internal fields, this gives
us two ways of accessing the same data—a byte at a time (via P0) or a bit at a time (via
P0_bit). The @ 0xFFF00 is a non-standard compiler-specific directive used to indicate to
the compiler that the register in question is located at address 0xFFF00. Finally, the direc-
tives __saddr and __no_init provide additional information to the compiler.

__saddr __no_init volatile union {
unsigned char P0;
__BITS8 P0_bit;

} @ 0xFFF00;

Let’s see an example of how to use these code constructs. First, let’s configure port 0 to be
all outputs. To do this we need to load all bits in PM0 with zero. We can do this with a sin-
gle operation by setting it to zero.

PM0 = 0;

Next let’s set port 0�s even bits to zero and odd bits to one. Note that port 0 only has seven
bits (no0 through no6). We can do this by accessing the bits individually:

P0_bit.no0 = P0_bit.no2 = P0_bit.no4 = P0_bit.no6 = 0;
P0_bit.no1 = P0_bit.no3 = P0_bit.no5 = 1;

We can also do this by pre-computing the byte which needs to be loaded into P0. Binary
0101010 is 2A in hexadecimal, so our code is as follows:

P0 = 0x2A;

2.4.1.3 Automatic Code Generation

Figure 2.4 shows the tools and files typically used for software development. The devel-
oper creates source code files (e.g., in C) which are compiled and assembled to create
corresponding object files. These object files are then linked together to create an exe-
cutable file which is programmed into a microcontroller’s program memory.

18 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

Some MCU makers and software tool vendors provide code generation tools which
simplify the developer’s job of writing software for accessing peripherals (device drivers).
This device driver code is typically specific to a processor family, so its development is
typically quite time-consuming until the coder has mastered the devices. In order to use the
code generator, the programmer specifies the peripheral configuration using a graphical
user interface and then invokes the “Generate Code” command. The tool creates C code
and header files containing software to configure the SFRs as specified graphically. Some
tools will also generate access functions, interrupt service routines and data structures to
further simplify the developer’s job.

Renesas provides a code generator called Applilet (“Application Leading Tool”) for
the RL78 family and others as well. We will examine Applilet in more detail in a later
chapter, and we will examine how to use it to support the examples presented. Let’s start
off by seeing how we use it to configure the port in the previous example. Figure 2.5 shows
the interface Applilet provides to the developer. The left window pane holds a tree view of
the different peripherals which can be configured: system, port, interrupts, serial, A/D,
timer, watchdog timer, real-time clock, interval timer, and so on. There are also correspon-
ding icons arranged horizontally in the right pane. The “Generate Code” button allows the
user to generate updated code based on the specified settings. A valuable feature of Ap-
plilet is that it provides “round-trip engineering” in that you can generate code with Ap-
plilet, add in your own code, and read it back into Applilet for further modification without
deleting or breaking your additions.

First, we wish to configure port 0 as an input port. Figure 2.5 shows the default port
configuration screen for port 0. All port bits are specified as unused. In order to configure
them all as outputs, we need to check “Out” for each port bit.

Note that some of the bits have an N-channel open-drain output mode available, as indi-
cated by the “N-ch” check box for those bits. We also see that pull-up resistors can be enabled
on each bit, and some offer a TTL-level buffer input mode. Finally, we can specify the initial
value of the output bits as one (by checking the “1� box) or zero (by leaving it unchecked).
We will use this to set the even bits to zero and the odd bits to one. The resulting screen ap-
pears in Figure 2.6. If we check the “Change I/O by software” box, Applilet will generate a
pair of functions for us to change the direction of a port bit to input or output.

Code
Generator

Linker
Compiler &
Assembler

Source Files

Source Files

Object Files
Executable

Files

Figure 2.4 Software toolchain processes source and intermediate files to create executable file.

CHAPTER 2 / MICROCONTROLLER CONCEPTS, INFRASTRUCTURE, AND INTERFACING 19

Figure 2.5 Applilet’s default port configuration screen.

Figure 2.6 Configuring port 0 to all outputs, and odd bits to ones.

20 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

Let’s take a look at the code generated by Applilet after we press “Generate Code”. We se-
lect the “File” tab next to “Module” and we can see in Figure 2.7 a tree view of the files
which we just generated. The Port item has three files associated with it: CG_port.c,
CG_port_user.c, and CG_port.h. We see that the CG_port.c contains function PORT_Init
and CG_port_user.c contains function PORT_UserInit.

Figure 2.7 File CG_port.c generated for configuring ports.

Port 0 is configured by assigning initialization values to the port register P0, the port mode
control register PMC0, the port mode register PM0, and then calling the user-defined (and
currently empty) PORT_UserInit function.

The code generator creates constants to make it easier to understand the specific bits
written to the ports. For example, the output data value for the port is created by ORing to-
gether multiple output bits. Each bit is defined as a symbol with multiple fields. For exam-
ple _00_Pn0_OUTPUT_0 represents:

� _00: the actual value of the symbol (0x00)
� _Pn0: port n bit 0
� _OUTPUT_0: output value of 0

Similarly, _02_Pn1_OUTPUT_1 represents:

� _02: the actual value of the symbol (0x02)
� _Pn1: port n bit 1
� _OUTPUT_1: output value of 1

CHAPTER 2 / MICROCONTROLLER CONCEPTS, INFRASTRUCTURE, AND INTERFACING 21

In the program, when we wish to access the port bits, we can do it directly, as above:

P0_bit.no0 = P0_bit.no2 = P0_bit.no4 = P0_bit.no6 = 0;
P0_bit.no1 = P0_bit.no3 = P0_bit.no5 = 1;

or as:

P0 = 0x2A;

For some peripherals Applilet will generate additional access functions to avoid the need to
directly control the bits (which typically requires a side trip to the reference manual).

2.4.2 Using LEDs as Outputs

Now let’s look at how we can use the general-purpose I/O ports to interface with simple de-
vices such as LEDs, switches, keypads, and motors. Along the way we will examine how
to use some of the control registers listed above.

One common output device is a light-emitting diode (LED). Figure 2.8 and Figure 2.9
show two ways of connecting LEDs to a microprocessor. Most microcontrollers I/O pins
can sink more current than they can supply, so LEDs are typically connected with cathode
to the microcontroller pin. This requires writing a zero to the port pin to turn on the LED.

18
17
15
14
13
12
11
10

19

5

LED1

R2

V
C

C

P1_0/AN9/KI01/CMP0_0
P1_1/AN8/KI0/CMP0_0

P1_2/AN10/K12/CMP0_2
P1_3/ANN11/KI3/TZOUT

P1_4/TXD0
P1_5/RXD0/CNTR01/INI11

P1_6/CLK0/SSIO1
P1_7/CNTR00/INI10

VSS/AVSS

P3_3/TCIN/INI3/SSI00/CMP1_0

R5F211A1DD

Figure 2.8 The microprocessor is sinking current from the LED. Turning on the LED requires
a logical LOW on the output pin.

LEDs require a current-limiting resistor so that they do not draw too much current from the
I/O pin to which they are connected. The resistor can be placed on either side of the LED.
The formula following Figure 2.9 on the next page shows how to calculate the value of the
current limiting resistor. VLED is the forward voltage of the LED at the desired current ILED

and it can be determined by examining the LED’s datasheet.

22 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

Let’s look at the code to drive an LED with its cathode connected to port 1 bit 0, as in Figure
2.8. First we configure the port as an output by writing 0 to the port mode register bit:

PM1_bit.no0 = 0;

Now we can write to the port bit to turn the LED on:

P1_bit.no0 = 0;

We can also turn the LED off:

P1_bit.no0 = 1;

2.4.3 Driving a Common Signal with Multiple MCUs

Sometimes we would like to have multiple devices drive the same signal wire. For ex-
ample, consider an MCU-based thermometer which drives its alarm output signal low if
the temperature is too high or too low, and drives it high otherwise. This alarm signal
controls a loud warning siren. How can we monitor multiple temperatures and use a sin-
gle centrally-located alarm LED? We cannot simply connect all of the alarm outputs
together.

R �
VCC � VLED

ILED

18
17
15
14
13
12
11
10

19

5
LED2 R2

G
N

D

P1_0/AN9/KI01/CMP0_0
P1_1/AN8/KI0/CMP0_0

P1_2/AN10/K12/CMP0_2
P1_3/ANN11/KI3/TZOUT

P1_4/TXD0
P1_5/RXD0/CNTR01/INI11

P1_6/CLK0/SSIO1
P1_7/CNTR00/INI10

VSS/AVSS

P3_3/TCIN/INI3/SSI00/CMP1_0

R5F211A1DD

Figure 2.9 The microprocessor is sourcing current to an LED. Turning on this LED requires a
logical HIGH signal on the output pin.

CHAPTER 2 / MICROCONTROLLER CONCEPTS, INFRASTRUCTURE, AND INTERFACING 23

Figure 2.10 shows the “push-pull” output used by the MCU GPIO ports. If one thermome-
ter tries to drive its output low, then its lower transistor (Q2) will be turned on and will pull
the output line to ground with a very low resistance (e.g., 0.1 �). If another thermometer
tries to drive its output high, then its upper transistor (Q1) will be turned on and will pull the
output line to VCC with a very low resistance (e.g., 0.1 �). With both transistors on, there is
a low-impedance path from VCC to ground, and a large amount of current flowing through
the two transistors. The current will create heat and destroy one or both transistors.

Q2
OFF

In

Q1 ON

Q4
ON

In

Q3 OFF

Q6
OFF

In

Q5 ON

Shared Bus

Large short-circuit current Large short-circuit current

Out 5 1 Out 5 0 Out 5 1

Figure 2.10 Push-pull driver circuits driving same line with different values will destroy at least one
output transistor.

Q2
OFF

In

R1

Shared Bus

Q4 Q6

In In

ON OFF

Small current

Figure 2.11 Open drain driver circuits driving same line with different values will not damage any
components.

24 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

To solve this problem, some GPIO ports outputs allow an “open drain” configuration,
in which the upper MOSFET is absent (or is merely disabled). This is also called
“wired-OR.” The resulting circuit is shown in Figure 2.11. This circuit allows multiple
open drain outputs to be connected together safely without risk of a short-circuit from
VCC to ground. A pull-up resistor may be needed on the output if a floating signal is
unacceptable.

Some RL78 output port drivers can support open drain mode. It is enabled when the
corresponding port output mode register bit (POM) is set to 1.

2.4.4 Using Switches as Inputs

One common input device is a single-pole single-throw (SPST) switch. We can connect it
as shown in Figure 2.12. The resistor will pull the voltage on that pin to logic HIGH until
the button connects to ground. When the button is pressed, the voltage at that pin will drop
to zero (logic LOW). Let’s look at the code to use port 1 bit 1 for this input.

First we configure the port as an input by writing 1 to the port mode register bit.

PM1_bit.no1 = 1;

Now we can read from the pin, keeping in mind that a 0 indicates the switch is pressed, and
a 1 indicates it is released. In this case we will turn off an LED whenever the switch is
pressed, and turn it on when the switch is released.

if (P1_bit.no1 �� 0) {
//switch is pressed, so turn off LED
P1_bit.no0 � 1;

} else {
//switch is not pressed, so turn on LED
P1_bit.no0 � 0;

}

Contact bounce is a worry with any mechanical switch. When the switch is closed, the me-
chanical properties of the metals in the switch cause the contacts to literally bounce off of
one another. Often the microcontroller is fast enough to read each of these bounces as an
individual switch press, resulting in unexpected and probably incorrect system behavior.
Your design should take this into account with either a hardware or software debouncing
solution. A hardware approach may use digital logic or analog circuitry (e.g., resistors and
a capacitor). Hardware debouncing circuits are very useful for interrupt pins. Software de-
bouncing works by not recognizing a changing input until the input has stabilized for a cer-
tain period of time.

CHAPTER 2 / MICROCONTROLLER CONCEPTS, INFRASTRUCTURE, AND INTERFACING 25

We can simplify this circuit by eliminating pull-up resistor R19 using the MCU’s built-
in pull-up resistor. We do this by adding the following code to the initialization sequence:

PU1_bit.no1 = 1;

2.4.5 Scanning Matrix Keypads

Using one input pin per switch works well for a small number of switches. However, using
this approach for a large number of switches (for example for a keypad or even a keyboard)
is inefficient, since we would need to use an MCU with many inputs, raising its cost.

Instead we can use matrix scanning to reduce the number of inputs required. This
works by connecting multiple switches to a single input, and reading just a single switch at
a time. We use output pins to control which switch in the input is read. For instance,
Figure 2.13 shows a keypad matrix. The top three signals are configured as outputs, and are
used as the columns of the matrix. The three pins connected as the rows of the matrix are all
input pins. A switch is placed in the circuit at each intersection of a column and row.

When no switches are pressed, the row inputs are all disconnected and floating. We
will use pull-up resistors to pull each of them to logic HIGH.

When a switch is pressed, it will connect the row input to the column output. We want
our code to drive one column output to logic LOW at a time.1 Our code will then determine

18
17
15
14
13
12
11
10

19
20

5 R
19

VCC

P1_0/AN9/KI01/CMP0_0
P1_1/AN8/KI0/CMP0_0

P1_2/AN10/K12/CMP0_2
P1_3/ANN11/KI3/TZOUT

P1_4/TXD0
P1_5/RXD0/CNTR01/INI11

P1_6/CLK0/SSIO1
P1_7/CNTR00/INI10

VSS/AVSS

P3_3/TCIN/INI3/SSI00/CMP1_0
P3_4/SCS/SCA/CMP1_1

GND

1 S
1

2

R5F211A1DD

Figure 2.12 Basic switch connection to a microprocessor input pin.

1 If we used pull-down resistors, our code would need to drive the column output to a logic HIGH instead.

26 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

which row input is LOW and therefore which switch in the keypad is pressed. For example,
if the microprocessor noted a LOW input in the middle row pin at the time when middle
column output was logic LOW, then the center switch must have been pressed.

Let’s look at some code to make this happen. Assume that the columns in Figure 2.13
are connected to port 3 bits 0, 1, and 2 respectively, and the rows are connected to port 4
bits 0, 1, and 2 respectively. First we need to configure the columns bits as outputs and the
rows bits as inputs:

PM3_bit.no0 = PM3_bit.no1 = PM3_bit.no2 = 0; //columns are outputs
PM4_bit.no0 = PM4_bit.no1 = PM4_bit.no2 = 1; //rows are inputs

Next we need to enable the pull-up resistors for row inputs:

PU4_bit.no0 = PU4_bit.no1 = PU4_bit.no2 = 1;

Now we are ready to drive the first column low and read the keypad rows:

P3_bit.no0 = 0; //Set the output of the first column to 0
P3_bit.no0 = 1; //Set the output of the second column to 1
P3_bit.no0 = 1; //Set the output of the third column to 1

1

P3_0
P3_1
P3_3

P4_0
P4_1
P4_2

1 2
S2

1 2
S7

21
S8

1 2
S3

1 2
S6

21
S9

1 2
S4

1 2
S5

1

S10
2

1 1

1 1 1

1 1 1

Figure 2.13 Keypad switch matrix.

CHAPTER 2 / MICROCONTROLLER CONCEPTS, INFRASTRUCTURE, AND INTERFACING 27

if (P4_bit.no0 == 0) {
//Conditional code for Row 0, Column 0

} else if (P4_bit.no1 == 0) {
//Conditional code for Row 1, Column 0

} else if (P4_bit.no2 == 0) {
//Conditional code for Row 2, Column 0

}

We could repeat this process for the remaining columns, but the code would be rather
messy and hard to maintain. It is better practice to take advantage of loops and variables to
simplify the code structure.

2.4.6 Driving Motors and Coils

Embedded systems often need to cause physical movement, and motors and solenoids
(a type of coil) are typical output devices. For example, a valve may be closed by a motor,
or a door lock may be driven by a solenoid. Motors and solenoids usually draw far more
current than a MCU’s output circuits can provide, and may also require higher voltages.
The MCU’s output limits are found in the datasheet. Buffer circuits are used to provide the
needed output current and voltage.

Direct Current (DC) motors can be driven with simple transistor drivers or H-bridges
(shown in Figure 2.14). If the left input of the circuit is connected to port 1 bit 2 and the right
input of this circuit is connected to port 1 bit 3, then we configure the port bits as outputs:

PM1_bit.no2 = PM1_bit.no3 = 0;

The code to turn the motor one direction is:

P1_bit.no2 = 1;
P1_bit.no3 = 0;

The code to turn the motor in the other direction is:

P1_bit.no2 = 0;
P1_bit.no3 = 1;

Finally, we can stop the motor by setting both outputs to the same value:

P1_bit.no2 = 1;
P1_bit.no3 = 1;

28 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

Note that a real circuit would include protection diodes across each transistor to the induc-
tive voltage spike when shutting off the motor.

GND

Q2
2N3906R17

Vout

Q4
2N3906 R18

Q3
2N3904

Q1
2N3904

MOTOR
1

Figure 2.14 H-bridge motor driver. Two if the microprocessor’s outputs are connected to the
resistors. The motor will not turn if both inputs are the same value.

Stepper motors can be driven with transistors or stepper motor driver ICs. Some ICs such
as the L293 or the 754410 are specifically designed to drive the DC motors and interface
directly with a microcontroller. Servos are motor/gearbox combinations with built-in mo-
tor control circuitry. These devices can often connect their control pins directly to a micro-
processor as their internal circuitry handles driving the motor itself. We will examine how
to control a servo motor in Chapter 9.

Relays are controlled by energizing their coil, and are treated similarly to motors.
Figure 2.15 shows a basic coil driving circuit. The code to drive a coil is the same as for
driving an LED.

CHAPTER 2 / MICROCONTROLLER CONCEPTS, INFRASTRUCTURE, AND INTERFACING 29

There are other methods of controlling large loads with a microprocessor, such as using re-
lays or triacs. The main goal for all load driving circuits is to keep the source and sink cur-
rents of the microprocessor within the manufacturer’s recommendations.

2.4.7 Voltage Level Shifting

Some sensors may require different voltages than what the microprocessor requires. Care
should be taken when interfacing these sensors. If the microprocessor runs at 5 V and the sen-
sor runs at 1.8 V, the microprocessor will not be able to read a HIGH logic signal on the sen-
sor output. Circuits for interfacing with higher voltage sensors can be designed using transis-
tors or by using level converter ICs, which convert the signals between the microcontroller
and the sensor either uni-directionally or bi-directionally (in case the microprocessor needs to
communicate to the sensor.) The use of a flyback diode is very important when interfacing in-
ductive loads, to safely dissipate the voltage spike when the voltage to the load is removed.

2.5 INTERFACING WITH ANALOG SIGNALS

The world is not digital; it is analog. Microphones, thermometers, speakers, light sensors,
and even video cameras are all analog sensors. As a result, the signals from these sensors
must be converted to digital values so that the microcontrollers can process them.

18
17
15
14
13
12
11
10

19
20
1
2

5

R16

P1_0/AN9/KI01/CMP0_0
P1_1/AN8/KI0/CMP0_0

P1_2/AN10/K12/CMP0_2
P1_3/ANN11/KI3/TZOUT

P1_4/TXD0
P1_5/RXD0/CNTR01/INI11

P1_6/CLK0/SSIO1
P1_7/CNTR00/INI10

VSS/AVSS

P3_3/TCIN/INI3/SSI00/CMP1_0
P3_4/SCS/SCA/CMP1_1

P3_5/SSCK/SCL/CMP1_2
P3_7/CNIR0/SSO/IXD1

T2
2N3904

R5F211A1DD

Vout

GND

2

R
20

L1

1

D
1

1N
40

04

Figure 2.15 A simple coil driver.

30 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

2.5.1 Analog Comparison

The simplest analog to digital conversion operation is a single comparison: Is the input
voltage greater than a reference voltage? It compares an analog voltage input with an
analog reference voltage, determines if the input is larger than the reference, and indicates
the result with a single bit (1 means yes and 0 means no). A comparator can be used to de-
termine if a battery voltage is too low, a temperature is too high, a pressure is too high, and
so forth.

The circuit needed to perform this operation is called an analog comparator and is
quite simple. Some microcontrollers contain one or more comparator circuits.

2.5.2 Multi-bit Analog to Digital Conversion

For many applications, a single yes-no answer is inadequate and a more precise measure-
ment is needed. In this case, an Analog to Digital Converter (also referred to as ADC, A/D,
A-to-D, and A2D) is used to produce a more precise multi-bit binary number which indi-
cates how large an input voltage is relative to a known reference voltage. This measure-
ment process is called quantization.

Analog Input

Reference Voltage

Digital Output (bits)

Figure 2.16 Analog to digital converter (ADC) block diagram.

A block diagram for a simple ADC is shown in Figure 2.16. The number of bits N in the
digital output is called the resolution of the ADC.

The digital approximation n for a particular analog input voltage Vin can be found
mathematically. V�ref is the upper end of the input voltage range, V�ref is the lower end of

CHAPTER 2 / MICROCONTROLLER CONCEPTS, INFRASTRUCTURE, AND INTERFACING 31

the input voltage range, and N is the number of bits of resolution in ADC. V�ref is often
connected to ground (0 V), resulting in the basic equation2:

For example, consider a two-bit ADC with a reference voltage V�ref of 3.3 V. What output
code will result for an input voltage of 3.1 V?

What is the output code for an input value of 1.5 V will result in an output of 01?

Figure 2.17 plots the transfer function which is used to convert an analog voltage (meas-
ured on the horizontal axis) to its digital output code representation (on the vertical axis).
It shows that 3.1 V maps to 11, and 1.5 V maps to 01.

n � inta1.5 V

3.3 V
* 22b � int (1.8) � 1 � 01b

n � inta3.1 V

3.3 V
* 22b � int (3.75) � 3 � 11b

n � inta Vin

V�ref
* 2Nb

2 This equation is extended in the chapter on analog interfacing to include other factors.

11

10

01

00

2.
47

5
V

3.
30

0
V

O
u

tp
u

t
C

o
d

e 1 LSB

Input Voltage

0.
00

0
V

0.
82

5
V

1.
65

0
V

Figure 2.17 A plot of the 2-bit ADC’s transfer function shows the range of input voltages
which maps to each output code.

32 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

Note that a single code (e.g., 01) represents an entire range of input voltages
(0.825 V to 1.65 V). The ADC will not be able to distinguish or resolve different voltages
within this range; both 0.9 V and 1.5 V will be converted as 01. The next code (10) repre-
sents the next range of voltages (1.65 V to 2.475 V). The range of voltages represented by
a single code is called the voltage resolution of the ADC. The voltage resolution of the
conversion is determined by the reference voltage and the number of bits in the conver-
sion result:

We can calculate the resolution of this ADC:

If we need to resolve the two voltages closer than 0.825 V, we need an ADC with better res-
olution (more bits). For example, a four bit ADC with a 3.3 V reference will have a resolu-
tion of 0.206 V and will produce different result codes for 0.9 V and 1.5 V.

Once the raw ADC value is known, the application software can use the reverse of this
formula to calculate the actual possible range of voltages on that pin. Since the datasheet
for most sensors provides a formula for converting the voltage to the unit the sensor is mea-
suring (be it degrees Celsius, distance in centimeters, pressure in kilopascals, etc.), this for-
mula can be inserted into the firmware to make sense of the data.

More advanced analog sensors use a communication protocol such as RS-232,
RS-485, I2C, or SPI. These sensors generally convert a physical parameter (temperature,
pressure, magnetic field strength, etc.) into an analog voltage, convert that voltage it a dig-
ital value, and then send it to the microcontroller for processing using a communication
system. These communication systems often use protocols which allow multiple sensors to
be connected to the same pins of the microcontroller.

2.5.3 Digital to Analog Conversion

Just as we must convert analog signals to digital to process them, sometimes there
is a need to convert digital signals to analog. In systems that control audio, speed,
or even light levels; digital output from a microprocessor must be converted into an
analog signal. There are several different methods for converting digital signals to
analog.

Resolution �
VRef

2N �
3.3 V

22 � 0.825 V

Resolution �
VRef

2N

CHAPTER 2 / MICROCONTROLLER CONCEPTS, INFRASTRUCTURE, AND INTERFACING 33

2.5.3.1 Resistor Networks

Resistor networks allow a very simple solution for converting digital signals to analog.
There are many methods of using resistor networks for DACs, but two designs are most
common.

2.5.3.1.1 Binary Weighted DACs: Resistor networks are another simple method for
DAC conversion. Several different methods are available for using resistor networks, and
again it is up to the designer to decide which method is best for a particular design.
Voltage-Mode Binary Weighted DACs are commonly used with microcontroller circuits. In
this design, resistors are connected together on one end (the analog output), and the other
ends are connected directly to the pins of a microcontroller port. The resistor values are se-
lected so that the each bit’s contribution to the output voltage corresponds to the bit’s bi-
nary weight (e.g., 20, 21, 22). Figure 2.18 shows an example of a 4-bit Binary Weighted
DAC. The LSB is connected to R4, which has value R. R5 has resistance R/2, R6 has resis-
tance R/4, and R7 has resistance R/8.

18
17
15
14
13
12
11
10

5

P1_0/AN9/KI01/CMP0_0
P1_1/AN8/KI0/CMP0_0

P1_2/AN10/K12/CMP0_2
P1_3/ANN11/KI3/TZOUT

P1_4/TXD0
P1_5/RXD0/CNTR01/INI11

P1_6/CLK0/SSIO1
P1_7/CNTR00/INI10

VSS/AVSS

P3_3/TCIN/INI3/SSI00/CMP1_0
P3_4/SCA/SCD/CMP1_1

P3_5/SSCK/SCL/CMP1_2
P3_7/CNIR0/SSO/IXD1

19
20
1
2

R5F211A1DD

16
9
6
4

8
3
7

P4_2/VREF
P4_5/INI0/HXD1

P4_6/XIN
P4_7/XOUT

MODE
RESET

VCC/AVCC

IC5

R4

R5

R6

R7
V

ou
t

Figure 2.18 Four-bit binary weighted network DAC.

34 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

2.5.3.1.2 R-2R DAC:

18
17
15
14
13
12
11
10

5

P1_0/AN9/KI01/CMP0_0
P1_1/AN8/KI0/CMP0_0

P1_2/AN10/K12/CMP0_2
P1_3/ANN11/KI3/TZOUT

P1_4/TXD0
P1_5/RXD0/CNTR01/INI11

P1_6/CLK0/SSIO1
P1_7/CNTR00/INI10

VSS/AVSS

P3_3/TCIN/INI3/SSI00/CMP1_0
P3_4/SCS/SCD/CMP1_1

P3_5/SSCK/SCL/CMP1_2
P3_7/CNIR0/SSO/IXD1

19
20
1
2

R5F211A1DD

16
9
6
4

8
3
7

P4_2/VREF
P4_5/INI0/HXD1

P4_6/XIN
P4_7/XOUT

MODE
RESET

VCC/AVCC

IC6

R8

R10

R12

R14 V
ou

t

R
15

R
9

R
11

R
13

GND

Figure 2.19 Four bit R-2R network DAC.

Another method of using resistor networks to design a DAC is called the R-2R or
R/2-R Network. It consists of resistors of only two values. One resistance value is twice the
other. For instance, if the R resistors are 1 k�, then the 2R resistors are 2 k�.

Figure 2.19 shows an example R-2R network. Resistors R9, R11, and R13 each have
resistance R (e.g., 1k�) while resistors R8, R10, R12, R14, and R15 each have resistance
2*R (e.g., 2 k�). The LSB is connected to R8.

As with the binary weighted DAC, the output voltage corresponds to the binary code
on the port.

Let’s consider an example. This is valid for both R-2R as well as Binary Weighted DACs.
If the Vref is 5 V and there is a 4-bit binary value 1001 (decimal number 9) on the micro-
controller pins, we would expect the output voltage to be:

Vout �
9

24 * 5 V � 2.8125 V

Vout �
binary code

2N *Vref

CHAPTER 2 / MICROCONTROLLER CONCEPTS, INFRASTRUCTURE, AND INTERFACING 35

2.5.3.2 Pulse Width Modulation

A common method for controlling the speed of a simple DC motor or the brightness of an
LED is Pulse Width Modulation. Pulse Width Modulation works as a DAC by changing the
duty cycle of an oscillating digital output as shown in Figure 2.20. In the case of an LED,
the more time the duty cycle is HIGH, the brighter the LED. This method works in cases
where the oscillating frequency is so fast that the resulting output seems smooth. The LED
is actually turning on and off many tens of times per second; however, the human eye can-
not detect the independent flashes of the LED due to their speed. Motor speed can be con-
trolled this way because the inertia of the spinning armature carries the motor forward
through the moments when no power is applied. A PWM signal is typically generated by a
timer peripheral which sets or clears the output signal when the internal counter reaches
configurable count values.

Figure 2.20 An example PWM signal. If this were controlling an active-high LED, the LED
would be brighter during the first half of the graph and dimmer over the second half.

2.6 RECAP

It should now be easier to understand how the embedded systems you encounter in your
everyday life actually operate and communicate with the outside world. It should also be
easier to break some of these systems down into their component parts, given the knowl-
edge of sensor and actuator interfacing presented in this chapter.

2.7 REFERENCES

Renesas Electronics Corporation. RL78/G13 16-Bit Single-Chip Microcontrollers User’s
Manual: Hardware. 2011.

2.8 EXERCISES

1. Name ten devices that use an embedded system.
2. Write the C code to set port 4, bits 0 through 3 to be input pins, and port 4, bits

4 through 7 to be output pins.

36 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

3. Write the C code to read the data on port 4, bits 0 through 3 and write the read
data to port 4, bits 4 through 7.

4. What resistor value should be used to connect an LED with a forward voltage of
3.1 volts and a forward current of 20 mA to the input pin of a microcontroller that
outputs 5 volts?

5. Is it generally safe to connect a coil or motor directly to a microcontroller
I/O pin? Why or why not?

6. Is it generally safe to connect a servo control input directly to a microcontroller
I/O pin? Why or why not?

7. How many volts per ADC step are in a system with an ADC resolution of 10 bits,
and a reference voltage of 3.3 V?

8. How many volts per ADC step are in a system with an ADC resolution of 12 bits,
and a reference of 5 V?

9. An analog input has a voltage of 1.37860. What value will the ADC return if it
has an 8-bit resolution and a reference of 4.25 volts?

10. An analog input has a voltage of 7.61245. What value will the ADC return if it
has a 12-bit resolution and a reference of 10 volts?

11. Using a binary-weighted DAC, using 8 bits and a reference of 4.35 volts, what is
the voltage of the output if the 8-bit value is 01011010?

12. Modify the keypad matrix scanning code to support a matrix with NC columns
and NR rows. Assume NC and NR are each less than or equal to 8. Your code
must use loops to minimize code duplication.

37

3.1 LEARNING OBJECTIVES

In this chapter the reader will learn about:

� Basic organization of a CPU core within a microcontroller
� The RL78 architecture’s instruction set, register set, data types, addressing modes,

and instruction processing pipeline
� Concepts and mechanisms for interrupts
� The RL78 architecture’s interrupt mechanisms, and how to use external interrupts

We tackle interrupts in this early chapter because they are a key mechanism for creating re-
sponsive systems with simple a software structure. They provide the illusion of concur-
rency without requiring an operating system.

3.2 CPU CONCEPTS

A microcontroller consists of a processor core (for executing instructions), memory (for
storing data), and supporting peripheral components which add functionality or improve
performance. Figure 3.1 shows the block diagram of a 64-pin RL78 MCU, of which the
G13 is one example. The figure shows how instruction execution is just a small part of
a microcontroller’s responsibility. Notice the four small boxes in the center labeled
“RL78 CPU Core,” “RAM,” “Code Flash Memory,” and “Data Flash Memory.” These are
the parts which are used to store and execute instructions. The rest of the MCU consists of
peripherals which make it much easier to embed the MCU in a device by tackling hardware
and software complications.

Figure 3.2 shows the CPU core from the instruction-processing point of view. The pro-
gram’s instructions are stored in code flash memory at the top of the diagram. The program
counter (PC) specifies which memory location to read in order to fetch the next instruction

RL78 CPU Core and Interrupts

Chapter ThreeChapter Three

38 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

TIMER ARRAY
UNIT (8ch)

ch0

ch1

ch2

ch3

ch4

ch5

ch6

ch7

TI00/P00
TO00/P01

TI01/TO01/P16

TI02/TO02/P17

TI03/TO03/P31

TI04/TO04/P42

TI05/TO05/P05

TI06/TO06/P06

TI07/TO07/P41
RxD2/P14 (LINSEL)

WINDOW
WATCHDOG

TIMER

LOW-SPEED
ON-CHIP

OSCILLATOR

REAL-TIME
CLOCK

INTERVAL
TIMER

SERIAL ARRAY
UNIT0 (4ch)

RTC1HZ/P30

UART0
RxD0/P11
TxD0/P12

UART1
RxD1/P03
TxD1/P02

CSI00
SCK00/P10

SI00/P11
SO00/P12

CSI01
SCK01/P75

SI01/P74
SO01/P73

CSI10
SCK10/P04

SI10/P03
SO10/P02

CSI11
SCK11/P30

SI11/P50
SO11/P51

IIC00
SCL00/P10
SDA00/P11

IIC01
SCL01/P75
SDA01/P74

IIC10
SCL10/P04
SDA10/P03

IIC11
SCL11/P30
SDA11/P50

SERIAL ARRAY
UNIT1 (2ch)

UART2
RxD2/P14
TxD2/P13

LINSEL

CSI20
SCK20/P15

SI20/P14
SO20/P13

CSI21
SCK21/P70

SI21/P71
SO21/P72

IIC20
SCL20/P15
SDA20/P14

IIC21
SCL21/P70
SDA21/P71

PORT 0 7 P00 to P06

PORT 1 8 P10 to P17

PORT 2 8 P20 to P27

PORT 3 2 P30, P31

PORT 4 4 P40 to P43

PORT 5 6 P50 to P55

PORT 6 4 P60 to P63

PORT 7 8 P70 to P77

4 P121 to P124PORT 12
P120

PORT 12
P130
P137

PORT 14 4 P140, P141,
P146, P147

KEY RETURN KR0/P70 to
KR7/P77

4
ANI16/P03, ANI17/P02,
ANI18/P147, ANI19/P120A/D CONVERTER

AVREFP/P20
AVREFM/P21

8
ANI0/P20 To
ANI7/P27

CODE FLASH MEMORYRL78
CPU

CORE
DATA FLASH MEMORY

RAM

POWER ON RESET/
VOLTAGE

DETECTOR

POR/LVD
CONTROL

RESET CONTROL

ON-CHIP DEBUG TOCL0/P40

RESET
X1/P121
X2/EXCLK/P122
XT1/P123
XT2/EXCLKS/P124

SYSTEM
CONTROL

HIGH-SPEED
ON-CHIP

OSCILLATOR

REGCVOLTAGE
REGULATOR

INTERRUPT
CONTROL

2
INTP1/P50,
INTP2/P51

2
INTP3/P30,
INTP4/P31

2
INTP6/P140,
INTP4/P141

4
INTP8/P74 to
INTP11/P77

INTP6/P16

RxD2/P14 (LINSEL)
INTP0/P137

SERIAL
INTERFACE IICA

SDAA0/P61
SCAL0/P60

BCD
ADJUSTMENT

DIRECT MEMORY
ACCESS CONTROL

MULTIPLIER &
DIVIDER,

MULTIPLY-
ACCUMULATOR

BUZZER OUTPUT

CLOCK OUTPUT
CONTROL

2 PCLBUZ0/P140,
PCLBUZ1/P141

V00,
EV000

V55,
EV550

TOOLRxD/P11,
TOOLTxD/P12

8

Figure 3.1 Block diagram for 64-pin RL78 MCUs (from RL78 Hardware Manual.)

CHAPTER 3 / RL78 CPU CORE AND INTERRUPTS 39

Code Memory
(Flash)

Register
File

Data Memory
(Flash)

Data Memory
(Internal RAM)

Data
Address

Generation

Instruction
Address

Generation

Instruction
Decoder

ALU

Mux Mux

Program Counter

PC
Information

Operation
Selection

Register
Selection

Write
Data

Register
Operand

Register
Operand

Instructions

Address Bus

Data Bus

Condition Codes
Operation Results

Immediate
Operand

Addressing
Mode

Figure 3.2 Simplified instruction and data flow through the CPU core.

from flash memory. This instruction is then decoded into various control and data signals
which are sent to other parts of the CPU to control their operation:

� Whether to access the register file for instruction operands, and which registers to
read or write

� Whether to access memory for instruction operands, and how to generate the address
� Whether to provide an immediate operand to the ALU, and how to generate it
� Which operation the ALU should perform (add, subtract, move, etc.)
� How to modify the PC to determine the next instruction’s address

40 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

3.3 RL78 CPU CORE

We now examine the different parts of the CPU core shown in Figure 3.1. First we briefly
discuss the types of instructions available, and then we see how an instruction proceeds
through the RL78 CPU core.

3.3.1 RL78 Instruction Set Architecture

A processor’s instruction set architecture (or programmer’s model) defines the data types,
registers, addressing modes, and instructions available to an assembly language program-
mer or compiler’s code generator.

3.3.1.1 Data Types

The native data types for a CPU core are those directly supported by the processors hard-
ware and not requiring emulation in software (typically provided by library functions or
generated by the compiler). Native data types can be processed much more quickly than
emulated data types, resulting in faster code. The RL78 ISA supports multiple data types:
bit, byte (eight bits), and word (16 bits).

3.3.1.2 Instruction Set

The RL78 ISA provides a variety of instructions, shown in Table 3.1. There are general in-
structions for data movement and loading, addition and subtraction, increment and decre-
ment, logical operations, shift and rotate, conditional and unconditional branching, sub-
routine call and return, and data stack manipulation. There are also processor-control
instructions for selecting the register bank, enabling or disabling interrupts, and halting or
stopping the processor.

There are also various specialized instructions available:

� Bit-oriented instructions: These allow the program to perform various operations
(move, and, or, exclusive ore, set, clear, invert) on an individual bit. These can
eliminate some masking operations and enable faster and smaller code.

� Skip instructions: These are like conditional branches with an implicit target—
they skip the next instruction (N � 1) and continue by executing the following in-
struction (N � 2). These skips can eliminate some jump operations and enable
faster and smaller code, as they are much faster than conditional branches.

� Multiply and divide instructions: In addition to the standard MULU instruction,
some RL78 cores may also support operations such as 16 � 16 multiply or
multiply/accumulate (with a 32-bit accumulator), and 16/16 and 32/32 bit divides.

CHAPTER 3 / RL78 CPU CORE AND INTERRUPTS 41

3.3.2 Program Memory, Instruction Fetch, and Decode

Microcontrollers typically have flash program memory integrated on-chip to simplify
system design, reduce costs and improve performance. As shown in Figure 3.3, the
RL78G13 has 64 kB of flash program memory located at addresses 00000H to 0FFFFH.
Other processors in the RL78 family have from 16 kB to 512 kB of flash program mem-
ory, but it always starts at address 00000H.

The program counter (PC) register holds the address of the next instruction to execute.
The CPU drives the program memory address bus with the PC and reads the instruction.
Long instructions may require multiple cycles to read. The instruction is then decoded to
determine how to control other subsystems in the CPU core.

TABLE 3.1. RL78 Instruction Set Summary

INSTRUCTION
TYPE 1-BIT 8-BIT 16-BIT

Data Transfer MOV1 MOV, XCH, ONEB,
CLRB, MOVS

MOVW, XCHW,
ONEW, CLRW

Operations AND1, OR1, XOR1,
SET1, CLR1, NOT1

ADD, ADDC, SUB,
SUBC, AND, OR, XOR,
CMP, CMP0, CMPS

ADDW, SUBW,
CMPW

Increment/
Decrement

INC, DEC INCW, DECW

Shift and Rotate SHR, SHL, SAR, ROR,
ROL, RORC, ROLC

SHRW, SHLW, SARW,
ROLWC

Call and Return CALL, CALLT, BRK, RET, RETI, RETB

Multiply/Divide MULU Optional: MULHU,
MULH, DIVHU, DIVWU,
MACHU, MACH

Stack PUSH, POP, MOVW

Branches BT, BF, BTCLR BR, BC, BNC, BZ,
BNZ, BH, BNH

Skip SKC, SKNC, SKZ, SKNZ, SKH, SKNH

CPU Control SEL RBn, NOP, EI, DI, HALT, STOP

42 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

The program counter is updated to point to the next instruction. This depends on whether
the current instruction is a control-flow instruction (e.g., jump, conditional branch, subroutine
call, return) or if the CPU needs to jump to or return from an interrupt service routine.

3.3.3 General Purpose and Special Registers

There are various registers in the CPU core. Some are general-purpose registers for data
processing and can be accessed by common instructions. Others are specialized registers
which are used to improve performance, simplify programing, or provide control over spe-
cific processor features.

The instruction decoder provides information on whether to access an operand in a
register, and if so, how.

3.3.3.1 General Purpose Registers

The RL78 ISA has four banks of general purpose registers. Two bits in the program status
word (PSW) register specify which bank to use. The general purpose registers are used for
sources and destinations of ALU operations and some may also be used as pointers to
memory. Each bank can be accessed as:

� 8-bit registers: X, A, C, B, E, D, L, H. Also referred to as registers R0, R1, R2, R3,
R4, R5, R6, and R7.

� 16-bit registers: AX, BC, DE, HL. Also referred to as register pairs RP0, RP1,
RP2, and RP3.

3.3.3.2 Special Registers

There RL78 ISA also has multiple special-purpose registers.

� Registers CS and ES are 4 bits long each and can be used to extend 16-bit registers
to 20 bits, allowing access to the full 1 MB of address space. CS is used for in-
struction addresses while ES is used for data addresses.

� Control registers
▫ The stack pointer SP is used for the stack-based addressing mode. It is 16 bits

long, and bit 0 is always cleared to 0 so only even addresses can be accessed.
SP points to the last used memory location (top) of the stack. The stack grows
toward smaller addresses.

▫ The program counter PC is 20 bits long and specifies the address of the next
instruction to execute.

� The program status word PSW is 8 bits long and has control flags and status flags.

CHAPTER 3 / RL78 CPU CORE AND INTERRUPTS 43

IE Z RBS1 AC RBS0 ISP1 ISP0 CY

<7> <6> <5> <4> <3> <2> <1> 0

PSW

Figure 3.3 Program Status Word register

▫ Control flags

● IE controls the masking (enabling) of maskable interrupts. When set to 1,
maskable interrupts can be serviced. When cleared to 0, maskable inter-
rupts cannot be serviced.

● RBS0 and RBS1 select one of the four register banks.
● ISP0 and ISP1 control the priority of acknowledgeable maskable vectored

interrupts.
▫ Status flags

● Z (zero) is set to 1 if the previous operation result was zero, or else it is
cleared to 0.

● CY (carry) is set to 1 by an add (or subtract) instruction which overflows
(or underflows). A rotate instruction loads CY with the shift-out value. Bit
manipulation instructions use it as an accumulator.

● AC (Auxiliary carry) is set if an operation resulted in a carry from or a
borrow to bit 3.

3.3.4 Data Memory

The RL78 has a unified 1 MB address space (shown in Figure 3.4) which provides access to
physically separate memories, special function registers, vector tables, and other such items. A
memory map shows where in the memory space these different items are located. For exam-
ple, the code flash memory (which holds the program) is created as a separate module so that
it can be accessed at the same time as other parts of the memory (e.g., RAM holding data).

The instruction decoder provides information on whether to access an operand in
memory, and if so, how. In particular, it specifies whether to read or write from memory,
which address to access, and how long the operand is.

How to compute the address depends upon the addressing mode used, and may consist of:

� a fixed memory address
� a shortened memory address with missing bits filled in with default values
� a register as used a pointer
� a register added to a constant and used as a pointer
� two registers added and used as a pointer

44 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

3.3.4.1 Memory Map

FFFFFH

FFF00H
FFEFFH

FFEE0H
FFEDFH

FEF00H
FEEFFH

F2000H
F1FFFH

F1000H
F0FFFH

F0800H
F07FFH

F0000H
EFFFFH

10000H
0FFFFH

00000H

Special function register (SFR)
256 bytes

General-purpose register
32 bytes

RAM
4 KB

Mirror
51.75 KB

Data flash memory
4 KB

Reserved

Special function register (2nd SFR)
2 KB

Reserved

Code flash memory
64 KBø

ø

ø ø

ø

ø
Program
memory
space

Data
memory
space

0FFFFH

010CEH
010CDH

010C4H
010C3H

010C0H
010BFH

01080H
0107FH

01000H
00FFFH

000CEH
000CDH

000C4H
000C3H

000C0H
000BFH

00080H
0007FH

00000H

ø ø

01FFFH

Boot
cluster 1

Boot
cluster 0

ø ø

Program area

On-chip debug security
ID setting area

10 bytes

Option byte area
4 bytes

CALLT table area
64 bytes

Vector table area
128 bytes

Program area

On-chip debug security
ID setting area

10 bytes

Option byte area
4 bytes

CALLT table area
64 bytes

Vector table area
128 bytes

Figure 3.4 Memory map for RL78G13 (R5F100LE) MCU (Figure 3.4 from RL78/G13 Hardware Manual)

CHAPTER 3 / RL78 CPU CORE AND INTERRUPTS 45

3.3.4.2 Addressing Modes

We see from the memory map in Figure 3.4 that the MCU could have up to 1 MB of mem-
ory, which requires 20 bits to address (220 bytes � 1 MB). Consider an instruction which
adds a memory operand (e.g., located at address FEFEEH) to register A and stores the result
in register A. If we specify the memory operand with its full 20-bit address, then the instruc-
tion will require 20 bits just for that operand address, or 2 and 1/2 bytes. We also need to
specify the add operation and register A, so we will need at least three bytes and perhaps four.
This will be a long instruction which wastes memory. Furthermore, fetching all of these
bytes will take multiple cycles (e.g., two cycles across a 16-bit wide bus), slowing down the
instruction’s execution speed. In order to reduce average instruction size and processing time,
the RL78 ISA provides various addressing modes for data and instructions. These addressing
modes reduce instruction size in part to speed up the program and reduce program memory
requirements. The addressing modes also make it easier to generate assembly code.

3.3.4.2.1 Data Addressing Modes:

The RL78 ISA has multiple addressing modes for accessing data, generally ordered from
fastest/smallest to slowest/largest: See Figure 3.5 on page 46 for details.

� Implied addressing uses the opcode rather than a register specifier to identify the
register (e.g., an accumulator).

� Register addressing uses a general purpose register, which is specified with two
bits (register pair) or three bits (single byte register).

� Short direct addressing specifies the address of the data using an 8-bit immediate
value (SADDR). Only 256 bytes in the address range FFE20H to FFF1FH are ac-
cessible. The SADDRP mode accesses only register pairs, which are located at
even addresses.

� Direct addressing specifies the address of the data using a 16-bit immediate value
(ADDR16) in the instruction word. Only the 64 kB with addresses in the range
F0000H to FFFFFH are accessible. This value may be extended to 20 bits using the
ES register (ES:ADDR16), in which case the entire 1 MB address space is accessible.

� SFR addressing specifies the 8 bit address of a special function register. SFRP ac-
cesses 16-bit words at even addresses.

� Register indirect addressing specifies a 16-bit register pair (DE or HL) to use as a
pointer to the location in the top 64 kB of memory. The ES register can be used to
extend DE or HL to 20 bits, allowing the entire 1 MB address space to be accessed.

� Based addressing adds a register (B, C) or register pair (HL, DE, SP, BC) and an
immediate offset (8 or 16 bits) in the instruction word and possibly the ES register
to create the 16- or 20-bit address of the memory to be accessed. There are several
variants of based addressing which are described in further detail in the software
manual (Renesas Electronics, 2011).

46 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

FFFFFH

FFF20H
FFF1FH

FFF00H
FFEFFH

FFEE0H
FFEDFH

FFE20H
FFE1FH

FEF00H
FEEFFH

F2000H
F1FFFH

F1000H
F0FFFH

F0800H
F07FFH

F0000H
EFFFFH

10000H
0FFFFH

00000H

Special function register (SFR)

256 bytes

General-purpose register
32 bytes

RAM

4 KB

Mirror
51.75 KB

Data flash memory
4 KB

Reserved

Special function register (2nd SFR)
2 KB

Reserved

Code flash memory
64 KB

SFR addressing

Register addressing
Short direct
addressing

Direct addressing

Register indirect addressing

Based addressing

Based indexed addressing

ø

ø

ø ø

ø

ø

Figure 3.5 Correspondence between data addressing modes and memory map (Figure 3.15 from

RL78/G13 Hardware Manual.)

CHAPTER 3 / RL78 CPU CORE AND INTERRUPTS 47

� Based indexed addressing adds a register (B or C) and a register pair (HL) and
possibly the ES register to create the 16- or 20-bit address of the memory to be
accessed.

� Stack addressing uses the stack pointer SP as to push and pop data.

3.3.4.2.2 Instruction Addressing Modes: The RL78 ISA has the following addressing
modes for accessing instructions. These are used for branch, call, and similar instructions.
The resulting address is placed into the PC register to specify the next instruction to read.

� Relative addressing adds a signed 8- or 16-bit displacement to the current program
counter value to update the PC.

� Immediate addressing loads the PC with a 16- or 20-bit absolute address specified
in the instruction word.

� Table indirect addressing loads the PC with one of 32 16-bit addresses stored in
the call table area of memory (CALLT).

� Register direct addressing loads the PC with the CS register concatenated with a
register pair (AX, BC, DE, HL).

3.3.5 Arithmetic/Logic Unit

The ALU (arithmetic/logic unit) is the heart of the CPU, as it performs the actual data pro-
cessing operations such as addition, subtraction, comparison, and so on. The ALU may re-
ceive its operands from the register file, memory, or other subsystem in the memory map.
The instruction decoder specifies which operation the ALU should perform.

3.3.6 Instruction Processing Pipeline

Pipelined instruction processing overlaps the execution of different parts of multiple in-
structions. This increases the instruction throughput (instructions per second), but does not
reduce the time taken to execute an individual instruction. Pipelining reduces the amount
of time needed to execute code.

Examining the CPU diagram in Figure 3.2 shows how an instruction propagates
through the circuit from top to bottom and does not need to use all of components at the
same time. A pipelined processor starts handling the next instruction at the top before the
current instruction has made it all the way through the logic and completed. Latches which
hold intermediate results between pipe stages are added in order to ensure proper operation.

A pipeline of N stages can reduce the execution time of a program by a factor of ap-
proximately N in the ideal case. This neglects delays due to pipeline fill and drain, and
stalls due to hazards.

48 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

3.3.6.1 RL78 Pipeline Structure

IF ID

ID

ID

ID

ID

MEM

MEM

MEM

MEM

MEM

<1> <2> <3> <4> <5> <6> <7>

IF

IF

IF

IF

Elapsed time (state)

Internal system clock

Concurrent processing by CPU

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

End of
instruc-
tion 1

End of
instruc-
tion 2

End of
instruc-
tion 3

End of
instruc-
tion 4

End of
instruc-
tion 5

Figure 3.6 RL78 instruction processing pipeline sequence.

The RL78 CPU pipeline has three stages, as shown in Figure 3.6:

� The IF (Instruction Fetch) stage fetches the instruction from memory and incre-
ments the fetch pointer.

� The ID (Instruction Decode) stage decodes the instruction and calculates operand
address.

� The MEM (Memory access) stage executes the instruction and accesses the speci-
fied memory location.

Many but not all RL78 instructions take one cycle to execute once the pipeline is full. The
RL78 Family Users Manual: Software (Renesas Electronics, 2011) presents execution
times for each instruction in Table 5.5.

3.3.6.2 RL78 Pipeline Hazards

There are various situations in which instructions cannot flow smoothly through the
pipeline due to hazards. For example, a data hazard occurs when necessary data has not
been computed yet. A structural hazard occurs when the resource is busy with other pro-
cessing. A control hazard occurs because the program’s control flow may change (e.g., due

CHAPTER 3 / RL78 CPU CORE AND INTERRUPTS 49

to a conditional branch). In this case the target address is unknown and therefore next in-
struction to execute is also unknown. In all of these cases the pipeline stalls for one or more
clock cycles until the hazard is resolved. The following situations lead to hazards which
stall the pipeline:

� Accessing data from flash or external memory (rather than internal RAM.)
� Fetching instructions from RAM rather than from internal flash ROM.
� Current instruction using memory addressed by register written in previous in-

struction (e.g., indirect access.)
� Changing the control flow of the program with instructions such as calls, branches

and returns. Conditional branches are not resolved until the MEM stage, so the target
address is not known until two cycles later. Because instruction fetching proceeds se-
quentially, branches are essentially predicted to be not taken. As a result, taken con-
ditional branches take two more cycles than not-taken conditional branches.

3.4 INTERRUPTS

An interrupt is a mechanism which causes the processor to execute a specific function
(an interrupt service routine, or ISR) in response to a specified event occurring, regard-
less of what part of the program is currently being executed (i.e., asynchronously). This
scheduling mechanism is built into configurable hardware, so it responds quickly yet is
flexible. After the ISR completes, the processor resumes executing the program where it
left off.

Interrupts make it much easier for a developer to create software which can respond
quickly to multiple events yet still keep a simple program structure which is easy to develop
and debug. Microcontrollers typically use interrupts to indicate events such as input signal
changes, timer expiration, analog conversion completion, low voltage, serial message recep-
tion, and others. If we do not have interrupts, we need to rely on polling to determine if an event
has occurred. We will see that this approach quickly grows inefficient, unwieldy, and slow.

Complex computer systems rely on an operating system to link events with function
execution (and often rely in part upon interrupts), but embedded systems often do not need
such a heavy-weight and resource hungry solution to be responsive. Instead, embedded
systems rely on the interrupt mechanisms built into most microcontrollers.

3.4.1 Breakfast with Polling vs. Interrupts

Consider the task of preparing breakfast, including brewing a pot of coffee. We need to boil
the water for the coffee, which takes roughly three minutes. The exact time depends on
factors such as the burner setting, which kettle is used, the quantity of water and its
temperature, and air temperature and pressure. So we don’t know exactly when the water

50 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

will boil. Without interrupts, we will need to examine (poll) the water to see if it has started
boiling yet. Let’s put in a step where we wait until the water is boiling before proceeding
with coffee preparation (turning off the burner, pouring the water into the coffee, etc.).

The breakfast program looks like this:

Put water in kettle, place on stove, and turn on burner
Grind coffee beans
Put ground coffee in filter in cone
Put cone on coffee mug
Wait until water is boiling
Turn off burner
Pour boiling water into coffee cone
Get bowl from cabinet
Get cereal box from cabinet
Pour cereal into bowl
Put cereal box back in cabinet
Get milk out of fridge
Pour milk into bowl
Put milk back in fridge
Get spoon

With this approach we may waste a large amount of time in the “Wait until water is boiling”
stage. We can use this time to perform other work which we interleave with our boiling checks:

Put water in kettle, place on stove and turn on burner
Grind coffee beans
Put ground coffee in filter in cone
Put cone on coffee mug
if water is boiling {
Turn off burner
Pour boiling water into coffee cone

}
Get bowl from cabinet
Get cereal box from cabinet
Pour cereal into bowl
Put cereal box back in cabinet
if water is boiling {
Turn off burner
Pour boiling water into coffee cone

}
Get milk out of fridge
Pour milk into bowl

CHAPTER 3 / RL78 CPU CORE AND INTERRUPTS 51

Put milk back in fridge
if water is boiling {
Turn off burner
Pour boiling water into coffee cone

}
Get spoon
if water still hasn’t boiled {
Wait until water boils
Turn off burner
Pour boiling water into coffee cone

}

Notice that now we have to check several times, and the amount of time before we see the
water is boiling depends on the other things we are doing.

How quickly do we need to respond to the water boiling? This is our response time re-
quirement. Boiling water with nothing in it (e.g., for coffee) is not very time-critical; after
a long time the water will boil away. However, boiling water with pasta in it for too long
will lead to the pot overflowing and making a mess.

How quickly we notice the water is boiling depends on the polling frequency. The
more often we poll, the sooner we will notice the water is boiling. However, we will also
waste more time performing polling, and we will complicate the program structure. So, for
boiling water with pasta we would need to insert many more boiling water checks.

Using polling to detect events is easy for simple systems but quickly grows unwieldy.
The field of real-time system scheduling examines better approaches and is discussed fur-
ther in the Chapter 10.

Now let’s see how the system looks if we use an interrupt, indicating the water is boil-
ing. We will rely on a kettle which whistles when the water boils. Now our program will
consist of two parts: the main preparation and the response to the boiling water.

The main preparation is as follows:

Put water in kettle, place on stove and turn on burner
Grind coffee beans
Put ground coffee in filter in code
Put cone on coffee mug
Get bowl from cabinet
Get cereal box from cabinet
Pour cereal into bowl
Put cereal box back in cabinet
Get milk out of fridge
Pour milk into bowl
Put milk back in fridge
Get spoon

52 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

The response to the boiling water is as follows:

Put down whatever is in our hands
Turn off burner
Pour boiling water into coffee cone
Pick up whatever we put down

Start preparing breakfast:

Put water in kettle and turn on burner
Put ground coffee in filter in cone
Put cone on cup
Get milk out of fridge
Get cereal from cabinet

Water
boils and

kettle
whistles

Interrupt Service Routine
Put down whatever is in hands
Turn off burner
Pour boiling water into coffee filter
Pick up whatever was put down

Resume breakfast preparation:
Get bowl from cabinet
Pour cereal into bowl
Get spoon
Put milk back in fridge

An Interrupt Occurs

Figure 3.7 Sequence of events when preparing breakfast.

The system will behave as shown in Figure 3.7 and work well regardless of when the wa-
ter starts boiling. This approach has several benefits:

� Efficient preparation since we don’t need to keep checking on the water.
� Easily maintained preparation sequence (e.g., code), since the two independent ac-

tivities are kept separate and not duplicated.
� Fast response to boiling water.

3.4.2 RL78 Interrupt Mechanisms

The RL78 architecture supports interrupts from many possible sources, both on- and off-
chip. When a interrupt is requested, the processor saves some of its execution state (pro-
gram counter and program status word), executes the ISR corresponding to the interrupt re-
quest, and then resumes the execution of the interrupted program.

The address of each ISR is listed in the interrupt vector table in memory. Whenever an
interrupt occurs, the processor uses this table to determine the location of the ISR.

CHAPTER 3 / RL78 CPU CORE AND INTERRUPTS 53

3.4.3 Interrupt Processing Activities

3.4.3.1 Hardware Activities Acknowledging an Interrupt

The CPU has a hard-wired response to interrupts and does not require any software execu-
tion or intervention.

CPU processing Instruction Instruction
PSW and PC saved,
jump to interrupt
servicing

Interrupt servicing
program

6 clocks

xxIF

9 clocks

Figure 3.8 Best-case interrupt response time.

1. When an interrupt is requested, the CPU will finish executing the current instruc-
tion (and possibly the next instruction1) before starting to service the interrupt.
Figure 3.8 shows a best-case example, in which the ISR begins executing 9 cycles
after the interrupt is requested. In the worst case (with a long instruction and an in-
terrupt request hold situation) this can take up to 14 cycles.

PC7 to PC0

PC15 to PC8

PC19 to PC16

PSW

SP–4

SP–3

SP–2

SP–1

SPV

SPWSP–4

X

X

X

X

X

Interrupt, BRK instruction
(4-byte stack)

Figure 3.9 Interrupt and BRK
instruction push processor status
and program counter onto stack.

1 Certain instructions (called interrupt request hold instructions) delay interrupt processing to ensure proper CPU
operation.

54 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

2. The CPU pushes the current value of the PSW and then the PC onto the stack, as
shown in Figure 3.9. Saving this information will allow the CPU to resume pro-
cessing of the interrupted program later without disrupting it.

3. The CPU next clears the IE bit. This makes the ISR non-interruptible. However, if an
EI instruction is executed within the ISR, it will become interruptible at that point.

4. If the interrupt source is a maskable interrupt, the CPU next loads the PSW PR field
with the priority of the ISR being serviced (held in the bits ISP0 and ISP1). This
prevents the processor from responding to lower-priority interrupts during this ISR.

5. The CPU loads the PC with the interrupt vector for the interrupt source.
6. The ISR begins executing.

3.4.3.2 Software Activities during ISR Execution

The ISR must be written to prevent it from corrupting system state. Note that only a small
portion of the state is saved automatically: the PC and the PSW. Since interrupts are asyn-
chronous to the executing program, we can’t tell which registers (e.g., A) are being used by
that program and which are free. An ISR needs to be conservative and save the state of all
of the registers it will modify, and then restore them on ISR exit.

Compilers will generate the save and restore code automatically for functions desig-
nated as ISRs.

� The standard method is to push the registers to use onto the stack upon ISR entry
(in the prolog), and pop them off just before exit (in the epilog). The IAR compiler
relies on the __interrupt keyword to indicate if a function is an ISR and needs this
special treatment.

� Some processors (including the RL78) provide extra register banks. Compilers
support this feature by allowing developers to specify which register bank an ISR
will use. For example, the IAR Embedded Workbench C Compiler recognizes the
directive #pragma bank�bank#. The ISR will execute code to switch to a separate
register bank upon ISR entry. This can dramatically reduce context switch time.
The original bank is restored when the return from interrupt pops the PSW from
the stack. A designer must ensure that ISRs are not reentrant and do not share any
register bank.

3.4.3.2.1 ISR Code Example #1 Consider an ISR which calls a subroutine IICA0_Master-
Handler if a special function register IICS0 has the most significant bit set. We examine the as-
sembly code generated by the IAR C compiler and find the following in the listing (.lst) file:

180 __interrupt void MD_INTIICA0(void)
\ MD_INTIICA0:
181 {
\ 000000 C1 PUSH AX

CHAPTER 3 / RL78 CPU CORE AND INTERRUPTS 55

\ 000001 C7 PUSH HL
\ 000002 AEFC MOVW AX, 0xFFFFC
\ 000004 C1 PUSH AX
182 if ((IICS0 & _80_IICA_STATUS_MASTER) == 0x80U)
\ 000005 8E51 MOV A, 0xFFF51
\ 000007 5C80 AND A, #0x80
\ 000009 D1 CMP0 A
\ 00000A 61E8 SKZ
183 {
184 IICA0_MasterHandler();
\ 00000C FD.... CALL IICA0_MasterHandler
185 }
186 }
\ ??MD_INTIICA0_0:
\ 00000F C0 POP AX
\ 000010 BEFC MOVW 0xFFFFC, AX
\ 000012 C6 POP HL
\ 000013 C0 POP AX
\ 000014 61FC RETI

The AX, HL, and CS (accessed through address 0xFFFFC) registers are saved on the stack in
the prolog and restored in the epilog. The RETI instruction is a return from interrupt and ends
the ISR. If we examine the RL78 software manual we will see that the PUSH, MOVW, and
POP instructions in the prolog and epilog each take one clock cycle. Hence the ISR spends a
total of eight cycles to save and restore the context of the three registers (AX, HL, and CS).

3.4.3.2.2 ISR Code Example #2 Some processor architectures (register-memory archi-
tectures) support operations on operands located in memory, without requiring that they be
loaded into registers. This simplifies ISRs as they need not save and restore as much con-
text. The RL78 is one such architecture. For example, consider an interrupt service routine
which toggles an output port bit and increments a global variable. We examine the assem-
bly code generated by the IAR C compiler and find the following in the listing (.lst) file:

61 __interrupt void MD_INTP2(void)
\ MD_INTP2:
62 {
64 P5_bit.no5 ^= 1;
\ 000000 7A0520 XOR S:0xFFF05, #0x20
65 int_count++;
\ 000003 A2.... INCW N:int_count
67 }
\ 000006 61FC RETI

56 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

This code is quite efficient, consisting of merely three instructions. Details on these in-
structions can be found in the RL78 software manual. Both the exclusive or (XOR) and the
increment word (INCW) operate on data stored in memory, eliminating the need to load
the data into registers for modification.

The XOR and INCW instruction each take two clock cycles because they each need
to perform two memory accesses for the read/modify/write operation. If the operands
were already in registers, each of these instructions would only take one clock cycle
each.

More complex ISRs may benefit from having data loaded into registers for manipula-
tion. In choosing which approach to follow, the compiler needs to balance the cost of load-
ing and storing operands from memory into registers (and the additional context
save/restore cost required to support this) against the benefit of faster data processing
instructions.

3.4.3.3 Hardware Activities upon ISR Exit

A maskable interrupt’s ISR must end with a RETI instruction, while a software interrupt
must end with a RETB instruction. This will pop the PC and then PSW from the stack to
resume prior program execution.

3.4.4 Interrupt Characteristics

3.4.4.1 Maskable vs. Non-Maskable Interrupts

Interrupts may be Maskable or Non-Maskable.

� Maskable interrupts can be disabled. For example, we may not want to use a spe-
cific interrupt source in our system, so we should mask that source to ensure it
never is activated. We may wish to have the processor ignore serial port activity
before the port is correctly initialized, to avoid spurious errors. Once the port and
the supporting data structures are initialized we would unmask the interrupt.

� Non-maskable interrupts are interrupts that cannot be ignored by the processor.
When such an interrupt occurs, the processor will service the interrupt uncondi-
tionally because of its criticality. Some examples of causes of non-maskable inter-
rupts are reset signal assertion, low supply voltage, illegal instructions, and mem-
ory errors.

3.4.4.2 Software Interrupt

Executing a BRK instruction will trigger a software interrupt. This interrupt is not mask-
able and is not prioritized.

CHAPTER 3 / RL78 CPU CORE AND INTERRUPTS 57

3.4.5 Controlling the CPU’s Response to Interrupts

The PSW register has two fields which allow a program to define how to respond to inter-
rupts. The IE bit allows all maskable interrupts to be ignored, while the ISP field allows
lower-priority interrupts to be ignored while still responding to higher priority interrupts.

3.4.5.1 IE: Interrupt Request Acknowledgement Enable or Disable

The IE bit in the PSW register controls the masking (disabling) of maskable interrupts. When
set to 1, maskable interrupts can be serviced. When cleared to 0, maskable interrupts are
masked and are not serviced. The EI and DI instructions set and clear the IE flag, respectively.

3.4.5.2 ISP1 and ISP0: Interrupt Service Priority

The ISP field in the PSW (ISP1 and ISP0) specifies the current interrupt priority level of
the CPU. 00 represents the highest priority and 11 the lowest. The CPU will service inter-
rupts with a priority level (set by PR1 and PR0, described below) which is the same as is
the ISP or higher priority (and therefore numerically smaller).

3.4.6 Configuration of Maskable Interrupts

All maskable interrupts share certain common configuration and status features, as detailed
in this section. Figure 3.10 shows configurable bits and processing. Note that the IE bit in
the figure is the Interrupt Enable flag in the PSW register.

Internal bus

MK IE PR1 PR0 ISP1 ISP0

IF
Priority controller

Vector table
address generator

Interrupt
request

Standby release
signal

Figure 3.10 Structure of Internal Maskable Interrupt Circuitry.

58 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

3.4.6.1 IF: Interrupt Request Flag

An interrupt request flag (IF) indicates whether an interrupt source has requested an inter-
rupt. The flag is set when an interrupt source requests an interrupt, and is cleared when the
processor acknowledges the interrupt. It can also be accessed by software to determine if a
specific interrupt has been requested or clear a pending request.

The interrupt flags are located in the registers IF0L and IF0H, through IF3L and IF3H.
Each interrupt request flag has a specific name consisting of the interrupt source name
combined with IF (e.g., PIF5, DMAIF1, TMIF04).

3.4.6.2 MK: Interrupt Mask Flag

Maskable interrupts are masked (disabled) by setting the source’s MK flag to one. They are
unmasked (enabled) by clearing the source’s MK flag. The mask flags are located in the
registers MK0L and MK0H through MK3L and MK3H. Each interrupt mask flag has a
specific name consisting of the interrupt source name combined with MK (e.g., PMK5,
DMAMK1, TMMK04).

3.4.6.3 PR1 and PR0: Interrupt Priority Specification Flags

The priority of each interrupt source can be set to one of four levels using the PR1 and PR0
flags. 00 specifies the highest priority.

The interrupt priority specification flags are located in the registers PR00L and PR00H
through PR13L. Each interrupt request flag has a specific name consisting of the interrupt
source name combined with IF (e.g., PIF5, DMAIF1, TMIF04).

3.4.7 Interrupt Vector Table

The interrupt vector table holds the 16-bit address (vector) of each ISR.2 The CPU
uses this table to load the PC with the correct ISR address. Figure 3.11 shows an exam-
ple of part of the interrupt vector information for the RL78G13 MCU. In some cases a
vector is used by multiple interrupt sources. For example, the reset vector (located at
00000H) is used when the RESET pin is asserted, for power-on-reset, when a low oper-
ating voltage is detected, when the watchdog timer overflows, or when an illegal in-
struction is executed.

2 This means the interrupt service routine must be located within the first 64 kB of memory.

CHAPTER 3 / RL78 CPU CORE AND INTERRUPTS 59

Fi
g

u
re

3.
11

In
te

rr
up

t
so

ur
ce

s
an

d
ve

ct
or

ad
dr

es
se

s.

IN
TE

R
R

U
PT

TY
PE

DEFAULT PRIORITY

IN
TE

R
R

U
PT

SO
U

R
C

E
IN

TE
R

N
A

L/
EX

TE
R

N
A

L

V
EC

TO
R

TA
B

LE
A

D
D

R
ES

S

BASIC CONFIGURATION
TYPE

128-PIN

100-PIN

80-PIN

64-PIN

52-PIN

48-PIN

44-PIN

40-PIN

36-PIN

32-PIN

30-PIN

25-PIN

24-PIN

20-PIN

N
A

M
E

TR
IG

G
ER

M
as

ka
bl

e
0

IN
TW

D
TI

W
at

ch
do

g
tim

er
in

te
rv

al
(7

5%
of

ov
er

flo
w

tim
e)

In
te

rn
al

00
04

H
(A

)
�

�
�

�
�

�
�

�
�

�
�

�
�

�

1
IN

TL
V

I
Vo

lta
ge

de
te

ct
io

n
00

06
H

�
�

�
�

�
�

�
�

�
�

�
�

�
�

2
IN

TP
0

Pi
n

in
pu

t
ed

ge
de

te
ct

io
n

Ex
te

rn
al

00
08

H
(B

)
�

�
�

�
�

�
�

�
�

�
�

�
�

�

3
IN

TP
1

00
0A

H
�

�
�

�
�

�
�

�
�

�
�

�
�

�

4
IN

TP
2

00
0C

H
�

�
�

�
�

�
�

�
�

�
�

�
�

�

5
IN

TP
3

00
0E

H
�

�
�

�
�

�
�

�
�

�
�

�
�

�

6
IN

TP
4

00
10

H
�

�
�

�
�

�
�

�
�

�
�

�
�

�

7
IN

TP
5

00
12

H
�

�
�

�
�

�
�

�
�

�
�

�
�

�

8
IN

TS
T2

/
IN

TC
SI

20
/

IN
TI

IC
20

U
A

RT
2

tr
an

sm
is

si
on

tr
an

sf
er

en
d

or
bu

ff
er

em
pt

y
in

te
rr

up
t/

C
SI

20
tr

an
sf

er
en

d
or

bu
ff

er
em

pt
y

in
te

rr
up

t/
IIC

20
tr

an
sf

er
en

d

In
te

rn
al

00
14

H
(A

)
�

�
�

�
�

�
�

�
�

�
�

�
�

�

In
te

rr
up

t
So

ur
ce

Li
st

(1
/4

)

60 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

EI

RETI

RETI

1 instruction execution

INTxx
(PR 5 11)

INTyy
(PR 5 00)

IE 5 1

IE 5 0

IE 5 1

IE 5 0

INTxx servicing INTyy servicingMain processing

Figure 3.12 Sequential ISR processing due to disabled IE bit in ISR.

In the default case, shown in Figure 3.12, ISRs do not re-enable interrupts until executing
their RETI instruction. When responding to INTxx, the CPU clears the IE bit to 0 and this
prevents the CPU from responding to INTyy. In this case, interrupts are sequentialized
(INTxx finishes before INTyy starts) and not nested.

Note that this is the safest practice and should be followed unless you have an ex-
tremely good reason to re-enable interrupts and understand the hazards of data races. “My
ISRs take too long to run” is almost never a valid reason for re-enabling interrupts in ISRs,
and instead an indication of bad software architecture and design.

3.4.8.2 Interrupts Enabled in ISRs

What happens if our ISR executes an EI instruction to set the IE bit? This depends on the
priority of the second interrupt (INTyy) relative to the first interrupt (INTxx).

3.4.8 Concurrent Interrupts

There are several possible interrupt sequences which can arise if interrupts are requested
close in time or even simultaneously.

3.4.8.1 Interrupts Disabled in ISRs

CHAPTER 3 / RL78 CPU CORE AND INTERRUPTS 61

If the second interrupt is the same or lower priority (PR is an equal or larger value), then
the first ISR will finish executing, as shown in Figure 3.13.

However, if the second interrupt is higher priority (PR is a smaller value), then the sec-
ond ISR will interrupt the first ISR, as shown in Figure 3.14.

EI

RETI

RETI

1 instruction execution

INTxx
(PR 5 10)

INTyy
(PR 5 11)

IE 5 1

IE 5 0

IE 5 1

IE 5 0

INTxx servicing INTyy servicingMain processing

EI

Figure 3.13 Sequential ISR processing due to prioritization.

EI

RETI

INTxx
(PR 5 11)

INTyy
(PR 5 10)

IE 5 1 IE 5 1
IE 5 1

IE 5 0 IE 5 0IE 5 0

INTxx servicingMain processing

EI

INTzz
(PR 5 01)

RETI

RETI

INTyy servicing INTzz servicing

EI

Figure 3.14 Nested ISR processing due to prioritization.

62 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

3.4.8.3 Simultaneous Interrupt Requests

If multiple interrupts are requested simultaneously then the interrupts are prioritized. The
interrupt with the highest priority (as defined by the smallest value of PR bits) is serviced
first and the requests for lower priority interrupts are held pending. If there are multiple in-
terrupts with the highest PR-bit-defined priority, then the interrupt with the highest default
priority (smallest value, see Figure 3.11) is serviced first and other interrupt requests are
held pending.

3.4.9 External Interrupts (Pin Input)

INTPn pin input

Internal bus

MK IE PR1 PR0 ISP1 ISP0

IF
Priority controller

Vector table
address generator

Standby release
signal

External interrupt edge
enable register

(EGP, EGN)

Edge
detector

Figure 3.15 External maskable interrupt (INTPn.)

The RL78 interrupt system supports external interrupts—these are triggered by an external
signal which is fed to a specific input. The RL78G13, for example, has thirteen external
interrupts.

The external interrupts sources can be configured to trigger on a rising edge, a falling
edge, or both edges. This is done using the EGP and EGN registers, for rising and falling
edges respectively.

3.4.9.1 External Interrupt Example

In this program we will configure an external interrupt INTP0 (on port 13 bit 7) to respond
to falling edges. Each falling edge will result in an ISR toggling an LED connected to port
P5 bit 5 and also increment a variable called counter.

In Figure 3.16 we use Applilet to set INTP2 to trigger on the falling edge, and assign it a
low priority (3).

CHAPTER 3 / RL78 CPU CORE AND INTERRUPTS 63

Figure 3.16 Configuring INTP2 with Applilet.

In Figure 3.17 we use Applilet to configure the port to drive the LED.

Figure 3.17 Configuring port 5 bit 5 as an output.

3.4.9.1.1 CG_main.c The main function initializes the peripherals, enables the inter-
rupt, and then does nothing.

extern unsigned int_count;
void main (void) {
__low_level_init(); /* Initialize peripherals */
INTP2_Enable(); /* Enable the mute button interrupt */
while (1)
;

}

64 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

3.4.9.1.2 CG_int_user.c A global variable int_count will store the interrupt count. We de-
fine it in CG_int_user.c. The variable is incremented by the ISR and read by the main function.

unsigned int_count = 0;

The interrupt service routine does the hard work of toggling the LED on and off, and in-
crementing the variable.

#pragma vector = INTP2_vect
__interrupt void MD_INTP2(void)
{
P5_bit.no5 ^= 1;
int_count++;

}

3.5 RECAP

This chapter presented an overview of how a processor core within a microcontroller is or-
ganized and how it operates. The RL78 instruction set architecture was presented and ex-
amined in detail. Concepts of interrupts were introduced and then demonstrated using the
RL78’s interrupt system. An example using external interrupts is presented.

3.6 REFERENCES

Renesas Electronics. (2011). RL78 Family User’s Manual: Software, USA: Renesas Electronics, 2011.

3.7 EXERCISES

1. Examine the RL78 software user’s manual. Which instruction takes the longest
time to execute?

2. Compile the following program and calculate the average IPC (cycles per instruc-
tion) based on the total number of cycles to execute and the total number of
instructions.

void main(void) {
volatile int a = 3, b = 5, c;
c = a*b;

}

CHAPTER 3 / RL78 CPU CORE AND INTERRUPTS 65

3. Write an assembly language program to calculate the 16-bit checksum of ten
words located in memory.
a. Use the register indirect addressing mode. How many clock cycles will the

program take to execute?
b. Use the based addressing mode. How many clock cycles will the program take

to execute?
c. Use the based indexed addressing mode. How many clock cycles will the pro-

gram take to execute?
4. Assume an RL78 MCU is executing a 2-byte-long instruction starting at address

01200H when an interrupt is requested. Assume the stack pointer is pointing to
FF000H and is not modified by the instruction. Draw a diagram of the stack (in-
cluding address and known contents) upon entry into the interrupt service routine.

5. Consider the ISR from example #2 and assume the RL78 processor is running at
32 MHz.
a. What is the maximum frequency at which this ISR can execute?
b. What would the maximum frequency be if the processor had to load operands

into register A (or AX) before it could perform the XOR and INCW operations?
6. What are the minimum and maximum amount delays between an interrupt being

requested and the ISR beginning to execute, assuming interrupts are enabled and
the RL78 MCU is running at 32 MHz?

7. Is it possible to configure the interrupt system so that a lower priority interrupt can
delay the response of a higher priority interrupt? Explain and provide an example.

8. Write a program using one ISR to implement a quadrature shaft encoder. Deter-
mine rotation direction by sampling the quadrature signal.

9. Write a program using two ISRs to implement a quadrature shaft encoder. This
will require some creativity.

67

4.1 LEARNING OBJECTIVES

We have tremendous flexibility when creating software; we make many decisions going
from an idea to a final working system. There are technical decisions, such as which com-
ponents we use to build a system, their internal structure, and how we interconnect them.
Some of the technical decisions will lead to a product that works, but not all will. There are
also process decisions, such as how we plan to build the system, and how to select those
components. Similarly, some process decisions can lead to an easier or more predictable de-
velopment effort, while others will lead to project delays or cancellation, or can even bank-
rupt the company. A good software process will evolve over time, incorporating lessons
learned from each project’s successes and failures. Hence a good process will make it easier
to do the technical work. The goal of this chapter is to show how both process and technical
issues need to be considered to successfully create a product on time and on budget.

In this chapter we try to present just the most critical concepts to help the reader un-
derstand that “does the code work?” is one question, but not the only question to an-
swer. There are many excellent books and articles which go into great depth on software
engineering for embedded and general purpose software; a few are listed in the refer-
ences section. For example, Jack Ganssle has a “top ten list” of why embedded systems
projects get into trouble (2006). In this chapter we discuss how a good software engi-
neering process addresses eight of them. Phil Koopman presents a detailed and practical
book on embedded software development processes and issues (2010). We will refer the
reader to specific chapters in the latter text periodically in order to keep this chapter
short and readable.

4.2 INTRODUCTION

4.2.1 Risk Reduction

Reducing risks is a driving force behind software engineering and project management. A
software development organization can benefit by constantly refining its processes as it
learns both what it does well, and how to improve what it does poorly.

Software Engineering for Embedded Systems

Chapter FourChapter Four

68 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

Developing embedded software is usually unpredictable. For example:

� What if there is a bug in our code? What if the compiler sometimes seems to gen-
erate buggy code?

� What if the code we need to write actually turns out to be a lot more complex than
we thought?

� What if we don’t have enough memory for our program or its data? What if the
processor can’t run our code fast enough?

� What if activating a motor resets the processor due to a weak power supply?
� What if that external A/D converter peripheral doesn’t seem to work the way the

datasheet said it would?
� What if the lead developer wins the lottery and quits a month before the product

deadline?
� What if the new developer we hired turns out to be incompetent, lazy, or both?
� What if half of our development team gets sick, is laid off, or is reassigned?
� What if the customer adds new requirements every week, or wants the product

done two months early?

If any of these risks actually occur they will increase the amount of development work
needed. Whether it affects the product development deadlines depends on how much over-
time the development team is willing to put in, whether other developers can help out,
whether anything in the development process turns out to be faster than expected, and so
forth. Missing deadlines will have negative financial impacts: project costs will increase
and income from product sales will be delayed. Some of these risks also have other im-
pacts: higher power consumption, fewer features, board redesign, and so forth.

Ganssle identifies “Unrealistic Schedules” as the number one reason for embedded
system project problems. Successful software organizations create a development plan for
the project to show development tasks and output products as well as risk management ap-
proaches. Koopman discusses development plans in detail in Chapters 2 through 4 of his
book Better Embedded System Software (2010).

4.3 SOFTWARE DEVELOPMENT STAGES

4.3.1 Development Lifecycle Overview

The embedded product lifecycle has multiple steps, as shown in Figure 4.1.
The software development process consists of multiple steps within that embedded prod-

uct lifecycle. One example process model is the V model, shown in Figure 4.2. It consists of:

� Defining system requirements.
� Creating an architectural or high-level design, deciding on the general approach to

build the system, and then creating appropriate hardware and software architectures.

CHAPTER 4 / SOFTWARE ENGINEERING FOR EMBEDDED SYSTEMS 69

� Creating detailed designs.
� Implementing code and performing unit testing.
� Integrating the code components and performing integration testing.
� Changing the code after “completion” to fit custom deployment requirements, fix

bugs, add features, etc.

NEED/
OPPORTUNITY

CONCEPT
DEVELOPMENT

MANUFACTURING
PROCESS
DESIGN

PRODUCTION

DEPLOYMENT

SUPPORT/
MAINTENANCE

UPGRADES

RETIREMENT/
DISPOSAL

PRODUCT
DESIGN

Figure 4.1 The embedded product lifecycle. (Courtesy P. Koopman, 2010.)

Validation provided by testing

Review

Requirements
Specification

Architectural
Design

Detailed
Design

Coding S/W Unit
Testing

Integration
Testing

Integration
Testing

Functional
Testing

Code

Review

Review

Review

Requirements
Analysis

Figure 4.2 The “V” model of software development emphasizes testing at each level of de-
sign detail.

70 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

The process breaks a problem into smaller easier problems through the process of top-
down design or decomposition. Each small problem is solved and the solutions are com-
bined into a software solution. There are many approaches possible:

� Do we design everything up front, and then code it? This is called a big up-front
design.

� Do we have a prototype or a previous version which we can build upon?
� Do we design and build a little at a time?
� What do we work on first, the easy or the hard parts?

Which model we should use depends on the types and severity of risks. Some industries
may be required to follow a specific development process in order for the product to re-
ceive certification. Ganssle identifies “Poorly Defined Process” as reason number six for
embedded system project troubles (2006).

Figure 4.3 Chartplotter screen with
boat icon overlaid on depth chart.

Figure 4.4 Chartplotter screen with nu-
merical depth and speed information.

CHAPTER 4 / SOFTWARE ENGINEERING FOR EMBEDDED SYSTEMS 71

In this chapter we will use an example embedded system to illustrate the issues involved.
Our target system is an electronic chartplotter for boats. The chartplotter can display a depth
chart on a graphical LCD with an icon superimposed to show the boat’s current position and
direction, as shown in Figure 4.3. This helps the user steer the boat to avoid shallow water.
Alternatively, we may choose to have a numerical display and omit the chart, as shown in
Figure 4.4. The chartplotter receives position, direction, and speed information from a
GPS receiver, and depth and battery voltage information from a depth sounder.

4.3.2 Graphical Representations

There are many graphical forms of diagrams we can use to describe a system’s structure
or behavior. We will examine several forms in this chapter. UML (Unified Modeling
Language) has many types, shown in Figure 4.5. These diagrams are useful throughout the
development process to present requirements, architecture, and detailed design.

Sequence
Diagram

Communication
Diagram

Interaction
Overview
Diagram

Timing
DiagramNotation: UML

Diagram

Class
Diagram

Component
Diagram

Object
Diagram

Structure
Diagram

Behavior
Diagram

Activity
Diagram

Use Case
Diagram

Profile
Diagram

Composite
Structure
Diagram

Deployment
Diagram

Package
Diagram

Interaction
Diagram

State Machine
Diagram

Figure 4.5 Types of UML diagrams (Courtesy Wikipedia).

4.3.3 Requirements

A system design begins with functional requirements. Ganssle identifies “Vague Require-
ments” as reason number five for projects getting into trouble. Koopman presents an excellent

72 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

discussion of software requirements (Chapters 5 through 9, 2010) so we will just present a
high-level view here.

� Requirements should be written down. This helps everyone have the same picture
of what needs to be accomplished, and makes omissions easier to spot.

� There are three types of requirements. Functional requirements define what the
system needs to do. Nonfunctional requirements describe emergent system be-
haviors such as response time, reliability, and energy efficiency. Constraints de-
fine the limits on the system design, such as cost and implementation choices.

� There are multiple ways to express requirements, both in text and graphically.
The most appropriate and convenient method should be used. Graphical methods
such as state charts, flow charts and message sequence charts should be used
whenever possible because (1) they concisely convey the necessary information,
and (2) they often can be used as design documents.

� Requirements should be traceable to tests. How will the system be tested to ensure
that a requirement is met? Requirements should be quantified and measurable.

� The requirements should be stable. Frequent changes to requirements (“churn”)
often have side effects and disrupt the ideal prioritization of work tasks. It is easy
for the latest changed requirement to be interpreted as the most important require-
ment, when in fact this is rarely the case.

4.3.4 Design Before Coding

Architectural
Design

Detailed
Design

Coding Test the Code

Figure 4.6 Basic stages in development.

There are various development models which we will discuss later in this chapter. At this
point, it is sufficient to understand that there are different ways to “slice and dice” the work
to be done, keeping in mind that we should develop each sub-system in the order
architect-design-implement. For example, don’t start writing code if you haven’t de-
signed the algorithm yet. This sequencing is quite important so we discuss it further.

One of the most effective ways to reduce risks in developing software is to design be-
fore writing code.1 Ganssle identifies “Starting Coding Too Soon” as reason number nine

1 There is related prior work in carpentry: Think thrice, measure twice, cut once.

CHAPTER 4 / SOFTWARE ENGINEERING FOR EMBEDDED SYSTEMS 73

for projects getting into trouble (2006). We refer to high-level design as the architecture,
and the low-level design as the detailed design. Figure 4.6 shows an overview of the devel-
opment process.

� Writing code locks you in to specific implementations of an algorithm, data
structure, object, interface method, and so forth. If this happens before you under-
stand the rest of the system, then you probably haven’t made the best possible
choice, and may end up having to make major changes to the code you’ve written,
or maybe even throw it away.

� Designing the system before coding also gives you an early insight into what parts
are needed, and which ones are likely to be complex. This helps prevent the sur-
prises which slow down development. One of the best ways of reducing schedule
risk is to understand the system in depth before creating a schedule, and then add
in extra time buffers for dealing with the risky parts. Estimation is the process of
predicting how long it will take to create the system.

� Designs should include graphical documents such as flowcharts and state ma-
chines when possible. The goal is to have a small and concise set of documents
which define how the system should do its work. Graphical representations are
easier to understand than code because they abstract away many implementation
details, leaving just the relevant items.2 This makes it easy for others to understand
your design and identify risks. It also helps bring new hires up to speed on the proj-
ect and reduces the chances they’ll break something when they start maintaining
or enhancing the code.

4.3.5 Peer Reviews of Design Artifacts

It is very helpful to have other team members review artifacts before proceeding to the next
phase of development. First, having another perspective on an issue brings in greater expe-
rience and helps detect oversights. Ganssle identifies “Bad Science” as reason number
seven for projects getting into trouble (2006). Second, if you know that someone else will
be reviewing what you are creating, you are likely to be more careful and professional.
Peer reviews should be applied to all development artifacts: requirements, test plans, ar-
chitecture, detailed designs, and code. We refer the reader elsewhere for more details on
peer reviews (Koopman, 2010).

2 Different businesses may have differing levels of formality (e.g., UML), but do not underestimate the benefit
of a simple diagram (whether hand-written or created in Visio).

74 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

4.3.6 System Architecture and Design Approach

The system architecture defines your approach to building the system. What pieces are
there, and how are they connected? What type of microcontroller and peripherals will be
used? What major pieces of software will there be? How do they communicate? What will
make them run at the right time? We present a summary of architectural concepts here,
and encourage the reader to dig deeper in the referenced text (see Chapters 10 and 11 in
Koopman).

Primary User
Interface

UART Rx ISR

Process NMEA
Data

Format and Save
Data

Secondary User
Interface

Flash Memory

UART Rx ISR

UART Tx ISR

SONAR

GPS

UART Rx ISR

NMEA Position
Information

NMEA Depth
Information

Position
Information

Formatted
Information

Display

Depth
Information

Figure 4.7 Communication diagram for chartplotter emphasizes data flow through tasks.

Figure 4.7 presents a UML communication diagram which emphasizes how data flows
through the different subsystems within the chartplotter, as well as to and from external de-
vices. Sonar and GPS information is delivered through two serial ports to the system. We
will use interrupt service routines and queues to buffer the data between the serial ports and
the main application task code. There are four separate tasks in the system:

� The Process NMEA Data task will receive the data from the sonar and GPS, de-
code it, and update the relevant variables which indicate current depth, position,
and so forth.

� The Primary User Interface task will update the display.
� The Format and Save Data task will convert the depth and other variables into a

human-readable text format and write them to flash memory.
� The Secondary User Interface task will provide a serial console interface so we can

read the logged data from flash memory, erase it, and perform other system main-
tenance functions.

CHAPTER 4 / SOFTWARE ENGINEERING FOR EMBEDDED SYSTEMS 75

We can look at the timing of a series of interactions between elements over time using a se-
quence diagram. For example, Figure 4.8 shows how both the GPS and SONAR send data
to the chartplotter, which processes each message. Time progresses downwards, so the
events higher in the diagram occur earlier in time.

Flash
MemoryChartplotterSONARGPS

NMEA Position
Information

NMEA Depth
Information Formatted Depth &

Position Information

Figure 4.8 Sequence diagram showing communication between different system elements.

A communication diagram, shown in Figure 4.9, corresponds more to a data flow diagram,
replacing the timeline with numbered communication labels.

Flash Memory

GPS

SONAR

Chartplotter

1: NMEA Position
Information

2: NMEA Depth
Information

3: Formatted Depth &
Position Information

Figure 4.9 High-level communication diagram for chartplotter.

76 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

We can look at the system with a layered point of view. For example, data arriving from the
GPS is buffered and then decoded by an NMEA-0183 parser before being provided to the
application for use.

4.3.7 Architectural Design to Meet Critical Properties

How does this architecture meet the most critical aspects of the requirements? These may
be related to time, safety, robustness, or something else which is application-specific. In
any case it is important to convey these concepts.

4.3.7.1 Time-Critical Processing

It is quite helpful to have a section in the architecture document which describes which
processing is time-critical, and how the system is architected to ensure the timing re-
quirements are met. For example, consider a light dimmer controller:

The system must switch power outputs within 50 microseconds of a zero-crossing of the
AC power line. Failure to switching within this time will lead to electrical noise and inter-
ference with other devices. The system is designed so that a hardware analog window com-
parator detects zero crossings and triggers a non-maskable interrupt. All power output
switching is performed by the ISR, which controls its outputs based on flags set by the main
code which indicates which outputs to enable. Hence interrupts must not be disabled for
longer than x microseconds.

The system must shut down within 10 ms of an overcurrent or overvoltage condition oc-
curring. Failure to shut down within this time can lead to equipment damage and failure. We
plan to use a periodic interrupt running at 1 kHz in order to sample dedicated analog hard-
ware comparators which detect these conditions. Because of the 1 kHz interrupt rate, inter-
rupts must not be disabled for longer than 8 ms, in order to allow a 1 ms safety margin.

Further information on real-time system design is available in Chapter 14 of the refer-
enced text (Koopman, 2010).

4.3.7.2 Safety-Critical Processing

It is quite helpful to have a section in the architecture document which describes which
processing is safety-critical, and how the system is architected to ensure the safety re-
quirements are met. For example:

The software tasks X, Y, and Z are safety-critical. They cannot be modified without trig-
gering recertification. In order to ensure real-time performance, we use a preemptive
scheduler and assign X, Y, and Z priorities higher than all other tasks. In order to minimize
the chances of data corruption, all critical variables used by X, Y, and Z are protected by
storing them with complements or with a block CRC.

Again, there is further detailed information in the referenced text (Chapters 26–30 in
Koopman, 2010) cover critical system properties).

CHAPTER 4 / SOFTWARE ENGINEERING FOR EMBEDDED SYSTEMS 77

4.3.8 Detailed Design

After we have decided upon an architecture for the system we can work on designing the
subsystems within it. Again, graphical representations can be quite useful, especially if the
corresponding requirements are graphical, as in this and similar cases they can be reused.

Start

Talker &
Sentence Type

Checksum

Sentence Body

any other byte,
or num_chars == 6

$/
num chars = 1

Valid Talker &
Sentence Type

*

[A-Z]/
num_chars++

[,.A-Z 0-9]

any
other
byte

Figure 4.10 State chart design for recognizing NMEA-0183 messages.

For example, state-based system behavior is best presented graphically. Figure 4.10
shows a finite state machine design for a UART Receive data ISR (the two circles labeled
“UART Rx ISR” in Figure 4.7) which recognizes certain valid NMEA-0183 messages and
enqueues them for later decoding. Corrupted or unneeded messages are discarded, saving
buffer space in RAM and processor time. These messages have a specific format which
includes the talker type (GPS, depth sounder, etc.), the message type, multiple data fields
(often with each followed by engineering units), and a checksum for error detection. The
statechart in Figure 4.10 shows how the decoder moves from state to state as specific char-
acters (e.g., $, *, letters A through Z) are received on the serial port, possibly in conjunc-
tion with other conditions.

78 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

We use an FSM-plus-ISR combination for two reasons. First, we want to minimize the
amount of time spent in the ISR. Structuring the problem as an FSM allows us to write
code which doesn’t waste any time waiting for things to happen. The ISR is only executed
when the UART has received a byte of data. Second, parsing structured data is a good
match for FSMs as it allows us to define rules to step through the different fields in a mes-
sage and validate them.

Figure 4.11 shows a flowchart design for the task “Process NMEA GGA” which decodes
a received GGA message. This code is much less time-critical, so it is implemented in a task
which the scheduler runs after being notified that the queue holds at least one valid message.
The diagram emphasizes the consecutive and conditional processing nature of the activity.

There are various other representations available beyond these two workhorses, so we
direct the reader other texts (see Chapters 12 and 13 of Koopman).

4.3.9 Implementation

Now that we have a detailed design it should be straightforward to proceed to the actual
implementation of the code. C is the dominant programming language for embedded sys-
tems, followed by C�� and assembly language. C is good enough for the job, even though
there are some languages which are much safer. The risk with C is that it allows the cre-
ation of all sorts of potentially unsafe code. Ganssle identifies “The Use of C” (or “The
Misuse of C”) as reason 8 for projects getting into trouble. There are a few points to keep
in mind as you develop the code (2006):

� Three fundamental principles should guide your decisions when implementing
code: simplicity, generality, and clarity (Kernighan & Pike, 1999).
▫ Simplicity is keeping the programs and functions short and manageable.
▫ Generality is designing functions that can work, in a broad sense, for a variety

of situations and that require minimum alterations to suit a task.
▫ Clarity is the concept of keeping the program easy to understand while re-

maining technically precise.
� Code should conform to your company’s coding standards to ensure that it is

easy to read and understand. See Koopman’s Chapter 17 for more information on
why coding style matters (2010). There are many coding standards examples avail-
able (Ganssle, J., 2008). The rules we have seen broken most often, and which
have the biggest payoff, are these:
▫ Limit function length to what fits onto one screen or page.
▫ Use meaningful and consistent function and variable naming conventions.
▫ Avoid using global variables.
▫ If you find yourself writing the same code with minor variations, it may be

worth parameterizing the code so only one version is needed.

CHAPTER 4 / SOFTWARE ENGINEERING FOR EMBEDDED SYSTEMS 79

Parse Time/Date

Parse Latitude
Value

Parse Latitude
Direction

Parse Longitude
Value

Parse Longitude
Direction

Parse Fix
Quality

Parse Satellite
Count

Invert Latitude
Value

Invert Longitude
Value

Signal New GPS
Data Exists

No Fix

[Fix Quality is GPS or DGPS]

Latitude Direction is s or S

Longitude Direction is w or W

Figure 4.11 Activity diagram for parsing “GGA” NMEA-0183 message

80 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

� Data sharing in systems with preemption (including ISRs) must be done very care-
fully to avoid data race vulnerabilities. See Chapter 11 of this text and Koopman’s
Chapters 19 and 20 for more details.

� Static analysis should be used to ensure that your code is not asking for trouble. Most
(if not all) compiler warnings should be turned on to identify potential bugs lurking in
your source code. Tools such as LINT are also helpful and worth considering.

� Magic numbers are hard-coded numeric literals used as constants, array sizes,
character positions, conversion factors and other numeric values that appear di-
rectly in programs. They complicate code maintenances because if a magic num-
ber is used in multiple places, and if a change is needed then each location must
be revised and it is easy to forget about one. Similarly, some magic numbers may
depend on others (e.g., a time delay may depend on the MCU’s clock rate). It is
much better to use a const variable or a preprocessor #define to give the value a
meaningful name which can be used where needed.

� It is important to track available design margin as you build the system up. How
much RAM, ROM, and nonvolatile memory are used? How busy is the CPU on
average? How close is the system to missing deadlines? The Software Gas Law
states that software will expand to fill all available resources. Tracking the resource
use helps give an early warning. For more details, see Koopman’s discussion on
the cost of nearly full resources (2010).

� Software configuration management should be used as the code is developed
and maintained to support evolving code and different configurations as well.

4.3.10 Software Testing

Testing is an important part of software development. It is essentially impossible to de-
velop error-free non-trivial software in a single try. It is especially difficult to design up-
front a system which will handle all possible input conditions (including failures) correctly.
Ganssle identifies “Inadequate Testing” and “Writing Optimistic Code” as reasons number
three and two for projects getting into trouble. Koopman covers verification and validation
of systems in detail.

Testing the developed software ensures that the product meets the requirements de-
fined. That is, testing proves that the software does what it is supposed to do. A corol-
lary is that testing identifies the software’s weaknesses. These defects are typically prior-
itized based on their criticality.

Although one can never completely test a program, some tests are more useful and im-
portant than others. Hence, it makes sense to think while planning the tests in order to get
the biggest return. Testing should be a logical, disciplined and systematic process, rather
than a rote and mechanical process. As with other subjects covered here, there are many
excellent texts on software testing for further information (Phillips, 2004).

CHAPTER 4 / SOFTWARE ENGINEERING FOR EMBEDDED SYSTEMS 81

There are several independent dimensions of testing to consider:

� Software tests may or may not depend on the internal details of how the module is
built. Black box testing assumes no knowledge about the internal structure, and
focuses instead on functionality. White box (or clear box) testing takes advantage
of such knowledge, so it can be more efficient in finding faults.

� Software testing should be done at various phases of the development process.
Unit tests are performed during coding on a per-module basis. Integration tests
are performed as the system is assembled (integrated) from modules.

� Regression testing ensures that past bugs which were fixed have not been
re-introduced.

4.3.10.1 Do We Know How the System is Built?

Black Box Testing tests the functionality of the software by treating it like a black box
with unknown contents. How the software performs a task is unknown and unimportant
to the test. The only needed thing to pass the test is for the software to do what it should.
There are many types of black box testing. Among them are tests for readiness, finite state
machine, cause-effect graphing, boundary value testing, and user profile:

� Readiness: This test checks if a function is present and functional, and ready for
testing. Black box testing should always begin with this form of testing.

� Finite state machine: Much software can be considered as finite state machines
that transit between different states based on different events. This form of test-
ing tests the transitioning between states and for errors that may occur with
them.

� Cause effect graphing: This form of testing helps to organize the concepts in other
black box techniques. For this test, the tester organizes all possible inputs and out-
puts of a program. This results in a form of a complete software test and helps to
systematically organize test cases.

� Boundary value testing: In this form of testing the inputs to the test system are di-
vided into meaningful sets and then tested in groups. One value from each set is
then input to the system rather than the whole set. This helps save time.

� User profile: This form of testing focuses on how the user intends to use the
software and which errors are important to their proper functioning while using
the software. This minimizes the amount of time needed to be put into testing.
However, learning what part of the program is used often is the difficult part of
the test.

White Box Testing relies on knowledge of the structure of the software. It is also known as
clear box testing. How the software performs a task is known to the testers, enabling them

82 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

to identify probable errors. Important elements of white box testing are coverage and
branch and conditioning testing.

� Coverage: The aim of white box testing is to cover every statement, state, and path
in a program within the constraints of time and money. This can be a daunting task,
especially if the program has a magnitude of conditional statements.

� Branch and condition testing: The goal of branch testing is to traverse every path
through the program. One way to do this is to use a flow chart of the program. The
first test goes through one part of the program. The next one differs from the one be-
fore. In this manner, all paths are traversed, even those that share a common part.

4.3.10.2 How Many Modules Do We Test at a Time?

Individual unit testing of modules is typically done by the software developer as the code
is created. As the developer has intimate knowledge of the implementation of the module,
this testing is typically white-box testing to maximize the effectiveness. The developer
writes test harness code to run the unit under specific conditions and verify the correct re-
sponses. Unit testing is quite effective because if there is a bug, it is in that module’s code,
design or requirements.

With integration testing each module is merged into the main program and is tested to
check if it works individually as well as with the rest of the program without causing any
errors. There are often scenarios where a subroutine works perfectly on its own, but fails
when integrated into the overall system due to unexpected dependencies, requirements, or
interactions.

There are various types of integration testing: Bottom up, top down, sandwich, and
build. Selecting the type of integration testing depends upon the people and product in-
volved in development.

� Bottom up: This is one of the classic approaches for design and testing. Each prob-
lem is broken down into smaller parts and solutions are written for them, also
called modules. Each module is tested individually and combined into subsystems
which in turn are also tested and then combined into a larger system. This goes on
until the complete solution is acquired and tested.

� Top down: The top down form of integration testing is similar to the bottom up
form but starts with a fully tested main routine. Modules are added to the main
routine one after the other and tested as a combination. The process thus continues
until all the modules have been added to the main program and tested.

� Sandwich: The sandwich testing form combines bottom up and top down forms of
testing. The top down part tests the main controlling sub systems whereas the bot-
tom up part integrates and tests the individual modules into sub systems.

� Build: The build form of integration testing starts with a core system to which
functionally related module sets are added consecutively.

CHAPTER 4 / SOFTWARE ENGINEERING FOR EMBEDDED SYSTEMS 83

There is also a “worst-practice” integration testing method known as Big Bang testing.
With this form of testing, all modules are combined and tested as a whole. Big bang testing
is not advisable with untested modules as diagnosing the error can be very difficult—
which of the many modules is really causing the problem? Or is an interaction between two
or more modules the cause?

4.3.10.3 How Do We Keep from Breaking Old Bug Fixes?

The goal of regression testing is to ensure that bugs which were found in past testing were
fixed and are still fixed. Sometimes an effort to fix a bug introduces other bugs. Regression
testing uses a suite of tests which triggered bugs in the past. Automated regression testing
allows developers to verify quickly and easily that their bug fix really is a fix. Regression
testing may be applied to both unit and integration testing.

4.4 SOFTWARE DEVELOPMENT LIFECYCLE MODELS

We now discuss software development lifecycle models in more detail. Recall that in
Figure 4.6 we saw that design should occur before coding. Now consider a system with
multiple subsystems—how should we “slice and dice” the development tasks?

AD DD C T

CAD T

CAD T

DD

DD

Figure 4.12 Fully interleaved subsystem development stages.

As shown in Figure 4.12, we could create all of the subsystem architectures before pro-
gressing to the detailed design of each and then implementations. This approach works bet-
ter if the subsystems are relatively loosely coupled and independent.

We could instead build the subsystems more sequentially, as shown in Figure 4.13.
With this approach we don’t create the detailed design for a subsystem until we have com-
pleted the creation and testing of the previous subsystem. This allows us to ensure that the
early subsystems are working completely before progressing to later subsystems.

Alternatively, we might feel that a critical subsystem is risky and needs to be proto-
typed before we can commit to the architectures (or perhaps just designs) for the other sub-
systems. This case is shown in Figure 4.14.

84 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

We can divide this scheduling of development tasks into two categories: waterfall (big
up-front design) and everything else (build a piece at a time). The advantage of the latter
approaches is that they deliver portions of the implementation to the customer and other
stakeholders earlier. This allows problems and misconceptions to be found earlier and
therefore fixed without disrupting the schedule as much. Projects with greater risks will
benefit more from more iterative approaches, while less risky projects may be imple-
mented more efficiently with a less iterative approach.

This chapter only provides a general description of these software processes. Further
details can be found in the references of this chapter.

4.4.1 Waterfall Process

The waterfall model of software development is an idealized process which assumes that
we know everything up front. The process gets its name because the processes flows down
the steps like falling water. This process is most appropriate when the problem is very well
understood so there is little risk. The following are the steps for the waterfall process:

1. Determine user needs
2. Gather requirements
3. Design
4. Build
5. Test
6. Demonstrate user product

AD DD C T

CAD TDD

CAD TDD

Figure 4.13 Partially sequential subsystem development stages.

AD DD C T

CAD TDD

CAD TDD

Prototyping

Figure 4.14 Hybrid subsystem development with up-front prototyping for risk reduction.

CHAPTER 4 / SOFTWARE ENGINEERING FOR EMBEDDED SYSTEMS 85

Figure 4.15: The Waterfall Process expressed as a V-chart illustrates the waterfall process.
In practice, there are often arrows jumping back up the waterfall3 which makes this model
an idealization.

3 Imagine salmon leaping upstream over the rapids.

User Needs

Requirements

Design Waterfall Process

Build

Test

User Product

Figure 4.15 The idealized waterfall process.

4.4.2 Iterative Process

The iterative process is used to deliver a product in increments. The customers define the
goals of the product at the beginning of development and are always anxious to have some-
thing quickly working. The iterative process provides the product to the customer in parts
and provides developers an opportunity to learn about the product and the customer while
building the product. This type of process is typically used when there is enough time for
developing a project in parts and the customer is eager to provide feedback on how the
product functions while it is being developed. Figure 4.16 illustrates the iterative process.

First
Delivery

Second
Delivery

Third
Delivery

Figure 4.16 Example of an iterative process with one development team expressed as a
V-chart.

86 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

4.4.3 Spiral Process

The spiral process combines many fundamental contents of different process models
into a single process. This process works best for projects that have a high risk of fail-
ure, such as research projects dealing with developing a new technology. Figure 4.17 il-
lustrates the spiral process. Each cycle starts with the steps shown in the upper left
quadrant, which are objectives (goals to achieve), constraints (limitations on resources),
and alternatives (different approaches to achieve the objectives). The second quadrant
(clockwise direction) shows the next steps in the process, which are risk analysis and
prototyping. It begins with alternatives produced in the first quadrant. The developers
then use the prototypes to analyze each alternative’s risks and gain more insight. The
third quadrant consists of the evaluation and decision making processes, followed by
building the solution. The final quadrant consists of understanding what to do for the
next cycle, which is repeated in the first quadrant. The developers revise the previous
phases and create a plan for the next quadrant, review the same, and then decide
whether to go ahead with the plan or stop building the project.

Acquire Objectives

Acquire Constraints

Acquire Alternatives

Evalute product

Plan the next cycle

Continue or stop

Evalute the risk
using prototyping

Evalute the risk
aversion approach

Build the product
of the cycle

Figure 4.17 The general spiral process.

4.4.4 Agile Development Methods

The most common agile development methods are scrum, extreme programming, and lean
development. These methods seek to deliver the product to the customer in satisfactory
condition as early as possible in a continuous manner.

CHAPTER 4 / SOFTWARE ENGINEERING FOR EMBEDDED SYSTEMS 87

Let’s examine scrum. With scrum, development activity is divided into a series of
sprints lasting two to four weeks. At the end of the sprint the team will have a working, de-
liverable software product. There are three main types of participants:

� The product owner speaks for the customer.
� The team delivers the product.
� The Scrum Master is responsible for eliminating obstacles from the team’s path.

Each sprint begins with the team members and product owner discussing features from a
prioritized feature list (the product backlog). The product owner identifies the desired fea-
tures, and the team estimates which can be delivered within the sprint, adding them to a
task list called the sprint backlog. The sprint backlog is frozen for the sprint, so that the
team members have clear goals during that development period. Each day during the sprint
there is a brief (fifteen minute) status meeting in which each team member answers three
specific questions:

� What have you done since yesterday’s meeting?
� What are you going to do today?
� Are there any issues keeping you from meeting your goals?

The Scrum Master then seeks to address the issues. Finally, each sprint is time-boxed. If a
feature is not completed by the end of the sprint, it goes back into the product backlog. One
of scrum’s main strengths is the short development cycle, which improves the speed of
feedback. There are aspects to scrum which we do not cover here, but further details are
available in numerous texts on the subject.

4.4.5 Prototyping

Prototyping is a popular and useful software process, especially when determining the
look and feel of the software has a higher priority than its basic functions. One of the
drawbacks of the prototyped process is that when the waterfall model of development is
used, the developer may create something completely different from what the customer
expected, since the requirements are gathered only at the beginning of the development
process. Thus, prototyping is better when it is performed as either an iterative or evolu-
tionary process.

Two basic types of prototypes used are the throw away and evolutionary prototype. In
the throw away prototype, developers use a demonstration tool or language. Once the cus-
tomer is satisfied with the prototype, the developers throw away the prototype and build the
actual product with real programming languages. In the evolutionary prototype, the devel-
opers use code from the prototype in the actual system.

88 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

4.5 RECAP

� A major risk of software development is starting coding too early. Designing the
system and its components before coding reduces development risks significantly,
and also provides other benefits.

� Industry follows many (and sometimes differing) processes when developing soft-
ware. A process gives a directional path to developing software in an organized
manner, and allows the people developing the software and using the software, to
maintain expectations from the development process at regular intervals.

� Pseudo code and graphical methods to design solutions to a software programming
problem allows understanding, resolving, and maintaining logical flow of a pro-
gram. They can also be directly included in the documentation for the program.

� Testing is an integral part of software testing and software not subjected to testing
is bound to fail. There are different techniques available for testing which should
be applied as appropriate.

4.6 REFERENCES

Ganssle, J.. The Art of Designing Embedded Systems, 2nd Edition. Burlington, MA: Newnes, 2008.

Ganssle, J. G.. “Breakpoints: Jack’s Top Ten.” Embedded Systems Design, December, 2006: pp. 61–63.

Kernighan, B. W., & Pike, R. The Practice of Programming. Boston: Addison-Wesley, 1999.

Koopman, P. J. Better Embedded System Software. Pittsburgh: Drumnadrochit Education, 2010.

Phillips, D. The Software Project Manager’s Handbook: Principles That Work at Work. New York: John

Wiley & Sons, 2004.

4.7 EXERCISES

1. Create a set of requirements for a vending machine which accepts coins and one-
dollar bills, and provides change. Assume that each type of item has its own
button.

2. Create a set of requirements for a controller for an elevator in a ten-story building.
3. Create a state machine for use in a cellphone to identify local phone numbers,

long-distance phone numbers, and invalid phone numbers.
4. Estimate how long it will take you to create a working program to flash the LEDs

on your favorite microcontroller board at a frequency proportional to the ambient
Celsius temperature. Then go ahead and create the program. Log the time spent for
each development activity. Analyze the time required for each activity, the accu-
racy of your estimations, and finally suggest improvements.

89

5.1 LEARNING OBJECTIVES

The goal of this chapter is to provide an overview of the tools and software support used
for developing embedded software.

� The build toolchain translates a program specification written in a source language
into an executable image

� The debug tools download the executable image onto the target hardware and al-
low the developer to control and inspect both the execution behavior and data of
the program

� Software support such as code generators and support modules reduce the amount
of coding required by a developer, reducing development time

5.2 SOFTWARE DEVELOPMENT TOOLCHAIN

Software Development Tools

Chapter FiveChapter Five

Code
Generator

Linker

Source Files

Source Files

Executable
FilesCompiler

Assembly
Files Assembler

Object
Files

Figure 5.1 Overview of software compilation process for a C program.

Figure 5.1 shows the tools and files typically used for software development. The devel-
oper creates source code files (e.g., in C) which are compiled and assembled to create cor-
responding object files. These object files are then linked together to create an executable
file which is programmed into a microcontroller’s program memory.

90 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

5.2.1 Compiler

The compiler translates a program from a source format (e.g., C language) to a target for-
mat (e.g., RL78 assembly language). Note that this is not a one-to-one mapping, as there
are many possible assembly language programs which could perform the work specified
by the source code.

Compilers for embedded systems differ from compilers for general-purpose processors
(GPPs). Minimizing code and data size is often critical for embedded systems since memory
sizes are limited due to price pressures. This makes compiler code and data size optimizations
extremely important. The tongue-in-cheek “Software Gas Law” states that a program will
eventually grow to fill all available resources. Embedded system software evolves as features
are added and defects are fixed, while the hardware changes much more slowly. It is much eas-
ier to reprogram an MCU than to redesign the hardware.As a result there is great value in com-
piler optimizations which can squeeze more code and data into the available resources.

Speed optimization is also often critical. However, it is done differently for embedded
systems and GPPs. First, GPP instruction sets have evolved over time to enable extremely
high clock rates (� 2 GHz) and deep instruction processing pipelines. Embedded proces-
sors with their lower clock rates do not need such deep pipelines, which leads to different
code optimization trade-offs. Second, a lower clock rate means that embedded systems
have a smaller performance penalty than GPPs for accessing memory instead of registers.
This has two interesting effects. First, the compiler makes different optimization trade-offs
with data allocation. Second, instruction sets for embedded systems can support memory-
to-memory and bit-level operations rather than being forced into a load/store model. Recall
the interrupt service routine from Chapter 3 which did not need to store any context—the
RL78�s memory-to-memory operation support eliminated the need to modify any proces-
sor registers, improving the speed of the resulting code.

5.2.2 Assembler

The assembler translates an assembly language file into an object file holding machine
code. This translation is much more direct than compilation, as each assembly language in-
struction translates to a machine language instruction. In some cases the assembler may
need to select among multiple forms of an instruction (e.g., depending on how far away a
branch target is, or how long an immediate data value is).

5.2.3 Linker

The linker combines the object code from the files generated by the assembler, and may also
incorporate object code from library files (e.g., sprintf). The linker organizes the different

CHAPTER 5 / SOFTWARE DEVELOPMENT TOOLS 91

sections of the program in appropriate parts of memory and then updates references to ad-
dresses which were missing.

For example, if in our source code we call the function sprintf, the assembly code will
contain an instruction CALL sprintf. However, the label sprintf must be translated to the
address where the function sprintf actually begins. This address depends on where the
module is placed in memory. The linker first lays out the different memory sections from
all modules and then calculates the addresses of the cross-referenced functions and vari-
ables, and then finally patches the code with the correct addresses.

Figure 5.2 Output files created for project by linker.

The linker produces two output files, as shown in Figure 5.2. The first is the image file (with
the suffix .d87) to be loaded into the MCU’s flash program memory. This includes all of the
code (user and library), interrupt vectors, initialization data, and other such information.

The second output file which is created is a map file. This is a text file which describes
where symbols are mapped to and how memory is used. By selecting the map file in the
workspace window we can examine the file. Figure 5.3 shows an important part (at the
very end of the file)—a summary of how much memory is used by our program. It is im-
portant to track how much memory we are using to ensure we don’t run out of space (as
predicted by the Software Gas Law).

Figure 5.3 End of map file.

92 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

5.2.4 Automating the Build Process

The build process is automated in order to save time and developer effort. The build
control system tracks dependencies among source files so that changing one file will
only result in rebuilding that module, dependent modules, and the final executable im-
age. This speeds up builds significantly. Unix- and Linux-based systems use a program
called make (and the associated makefile which defines dependencies and build ac-
tions). IAR Embedded Workbench, like other IDEs, takes care of the build process in-
ternally and automatically.

Figure 5.4 Toolbar section for
controlling program building
process.

Figure 5.5 Toolbar section for
downloading the program and
starting the debugger.

Figure 5.4 shows the toolbar with options for building a single source file, building the en-
tire project, and stopping the build process. There are typically other commands available in
the project menu. For example, the clean command deletes all intermediate and output files.

5.3 PROGRAM DEBUGGING

A debugger is a software program which we run to manipulate and monitor the execution
of the target system’s program. It enables us to load a program, control its execution, and
monitor its variables. In this section we examine C-Spy, a source-level debugger from
IAR Systems which is integrated into Embedded Workbench.

5.3.1 Downloading Programs

Figure 5.5 shows the toolbar with options for downloading the program and starting the de-
bugger (solid triangle), or merely starting the debugger without downloading the program
(empty triangle).

CHAPTER 5 / SOFTWARE DEVELOPMENT TOOLS 93

5.3.2 Examining Programs

Figure 5.6 Source and object code listing.

Many debuggers can show us both the source-level C program and the disassembled object
code, as shown in Figure 5.6. The currently executing statement or instruction is highlighted,
allowing us to track the program execution easily. The disassembly view gives us a fine-grain
view of precisely what the processor is doing, and sometimes can be quite helpful.

5.3.3 Controlling and Observing Program Execution

Figure 5.7 Toolbar for controlling program execution (when program is stopped).

Figure 5.8 Toolbar for controlling program execution (when program is running).

94 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

There are several options available for controlling the program’s execution behavior. From
left to right in Figure 5.7 and Figure 5.8, the buttons allow us to:

� Reset: Reset the processor and the program.
� Stop: Stop a running program.
� Step Over: Execute code until reaching a step point. If it encounters a function call,

then it will step over (execute the entire function) and stop after returning from the
function.

� Step Into: Execute code until reaching a step point. If it encounters a function call,
it will step down into the function and stop at its first line.

� Step Out: Execute the remaining code in the function and step out of it up to the
function which called this function.

� Next Statement: Execute code until reaching the next statement in the source code.
� Run to Cursor: Execute code until reaching the source statement holding the cursor.
� Go: Execute the program until stopped or a breakpoint is reached.

5.3.3.1 Breakpoints

We can set a breakpoint at a specific line in the source code or object code by right-clicking
on that line to bring up a context menu. Figure 5.9 shows an example of a breakpoint which
has been set in a C source file.

Figure 5.9 Source code window showing next line of code to execute (while . . .) and break-
point (datax . . .).

CHAPTER 5 / SOFTWARE DEVELOPMENT TOOLS 95

5.3.3.2 Call Stack

Figure 5.10 Call stack viewer window.

We can examine the program’s current level of subroutine call nesting by using the func-
tion call stack viewer window, as shown in Figure 5.10. In this example, the program is ex-
ecuting the C function LCDDrawIndicator, which was called by C function main, which
was called by an instruction at address _MAIN_CALL � 0x3.

5.3.4 Examining and Modifying Data

Being able to examine and even change the value of variables in a program is extremely
helpful when debugging a program. For example, Figure 5.11 shows the local variables
and arguments in the current function. A variable’s value can be changed by selecting it in
this window. There are similar windows for examining global variables and specific
“watch” variables.

Figure 5.11 Local variable viewer window.

At times we may need to see the other contents of the stack. To support this we can exam-
ine the stack contents as shown in Figure 5.12. Here we see not only the local variables and
arguments, but also space on the stack used for other purposes such as the return address.

96 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

This view can be especially helpful when debugging a program which crashes due to cor-
ruption of the return address by an out-of-bounds memory access.

Figure 5.12 Stack viewer window.

Figure 5.12 also shows another useful feature—how much of the allocated stack space is
used. Some toolchains include a calculation of maximum possible stack depth. This is
helpful because we would like to allocate just enough stack space, but no more. If we don’t
allocate enough space, then the stack may overflow due to deeply nested subroutine calls
and interrupt service routines. This leads to program crashes which are extremely hard to
replicate and therefore debug. Allocating too much space means that we waste RAM,
which is a limited and therefore valuable resource in microcontrollers.

There are both analytical and experimental methods for estimating maximum stack
depth. A practical but unsafe experimental method called high-water marking is as follows:

� Preload the stack space with a known, fixed pattern.
� Run the program through test cases which hopefully trigger maximum stack depth

requirements.

CHAPTER 5 / SOFTWARE DEVELOPMENT TOOLS 97

� Examine the stack space to see how much of the pattern was overwritten, and cal-
culate the amount of stack space used.

� Multiply the amount of stack space used by a margin of safety (1.3? 1.5?) to try to
compensate for the fact that we don’t know if our test cases really triggered the
worst case.

5.4 SOFTWARE SUPPORT FOR THE RL78

There are various additional types of software support for developers of embedded systems
using the RL78 family of microcontrollers.

5.4.1 Header Files for RL78 MCUs

The ‘ior5f100le.h’ and ‘ior5f100le_ext.h’ files makes it easier to access the MCU’s hard-
ware. They provide symbolic names to access special function registers (SFRs) in the same
manner as variables. This makes the code much easier to write and maintain. Each SFR is
described as a union (enabling multiple views of the same data, such as one byte or eight
bits) which is located in memory at the SFR’s address. Symbolic names are assigned for in-
dividually addressable bits to further simplify code development. Also, symbolic names
are assigned to numeric interrupt vector addresses.

The file ‘intrinsics.h’ specifies functions which will actually be implemented using
specific RL78 instructions such as STOP, HALT, BREAK, NOP, DI, EI, and others.

5.4.2 Code Generator

Some MCU makers and software tool vendors provide code generation tools which sim-
plify the developer’s job of writing software for accessing peripherals (device drivers).
This device driver code is typically specific to a processor family, so its development is
typically quite time-consuming until the coder has mastered the devices. In order to use the
code generator, the programmer specifies the peripheral configuration using a graphical
user interface and then invokes the “Generate Code” command. The tool creates C code
and header files containing software to configure the SFRs as specified graphically. Some
tools will also generate access functions, interrupt service routines, and data structures to
further simplify the developer’s job.

Renesas provides a code generator called Applilet (“Application Leading Tool”) for
the RL78 family and others as well. Figure 5.13 shows the interface Applilet provides to
the developer. The left window pane holds a tree view of the different peripherals which
can be configured: system, port, interrupts, serial, A/D, timer, watchdog timer, real-time

98 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

clock, interval timer, and so on. There are also corresponding icons arranged horizontally
in the right pane. The “Generate Code” button allows the user to generate updated code
based on the specified settings.

A valuable feature of Applilet is that it provides “round-trip engineering”—you can
generate code with Applilet, add in your own code, and read it back into Applilet for fur-
ther modification without deleting or breaking your additions.

5.4.3 LCD Support and Glyph Library

The RL78 RDK includes a monochrome graphical LCD (liquid crystal display) with a res-
olution of 96 by 64 pixels. Figure 5.14 shows an overview of the hardware and software
components used to control the display. The LCD (at the bottom) is connected to an
ST7579 LCD controller/driver IC, which is shown in Figure 5.15. The MCU communi-
cates with the controller IC through serial three-wire communications (SPI).

Figure 5.13 Applilet’s default port configuration screen.

CHAPTER 5 / SOFTWARE DEVELOPMENT TOOLS 99

The ST7579 controller IC contains an internal memory buffer (display data RAM) which
contains 102 by 68 bits. Each bit is used to determine whether the corresponding LCD
pixel is dark or light. The Glyph module converts requests to print text (e.g., GlyphString)
into a series of commands to the ST7579 controller to set or clear specific bits in the dis-
play data RAM, which then control what is displayed on the LCD.

The serial array unit (SAU) is an on-chip communication peripheral in the RL78 MCU.
The CG_serial module is generated by Applilet and it contains functions to configure the
SAU to perform SPI communication. The RDKRL78_spi and YRDKRL78_LCD modules
provide various translation functions to support the ST7579 software driver module, which
accesses the control registers within the controller IC.

Figure 5.16 shows an example with text rendered with large and small fonts using the
Glyph API. There are other libraries which can be used to render text and graphics on an
LCD, but we examine the Glyph library because it is included with the RL78 RDK.

Application

Glyph

ST7579

YRDKRL78_LCD

RDKRL78_spi

CG_serial

Serial Array Unit

ST7579 LCD Controller

Liquid Crystal Display

MCU

Software

Hardware

S
P

I

Figure 5.14 Diagram of hardware and software used for displaying text on LCD.

100 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

SEG0...SEG101 COM0...COM66
COMS1/COMS2

SEGMENT
Drivers

COMMON
Drivers

Display Data Latches COMMON
Output

Controller

Timing
Generator

Oscillator

Display Data RAM
(DDRAM)
102X68

OSC

Data
Register

Address
Counter

Control
Registers

Command
Decoder

MPU INTERFACE (Parallel/Serial)Reset
Circuit

R
E

S
B

VM

VSS

VGI
VGO
VGS

XV0I
XV0O
XV0S

V0I
V0O
V0S

VDD2

VDD1

Voltage
Follower

XV0
Generator

V0
Generator

Power
System

VG
VM

XV0

V0

P
S

2
P

S
1

P
S

0

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

/R
D

(E
)

/W
R

(R
/W

)
A

0
C

S
B

Figure 5.15 Block diagram of ST7579 LCD controller and driver IC.

Figure 5.16 Text rendered on
LCD using Glyph API.

CHAPTER 5 / SOFTWARE DEVELOPMENT TOOLS 101

Figure 5.17 shows a summary of the function calls which the Glyph library provides as an
interface to the application program. There are functions for configuring the driver and dis-
play modes, selecting a font, positioning output, rendering text, drawing rectangles, and
other activities.

5.5 RECAP

In this chapter we have learned about the tools and software support used for developing
embedded software. The build toolchain translates code from a source language into an ex-
ecutable image to be downloaded into the MCU’s memory. The debug tools enable us to
control and monitor the execution of the program on the target hardware, preferably while
giving a source-level view of the program and its variables. Finally, there are various sup-
port files, libraries, and code generation tools available to reduce the time and effort of
writing new code.

GlyphOpen() GlyphSetFont() GlyphSleep()
GlyphClose() GlyphGetFont() GlyphWake()
GlyphWrite() GlyphSetDrawMode() GlyphDrawTestPattern()
GlyphRead() GlyphChar() GlyphDrawBlock()
GlyphGetStatus() GlyphString() GlyphEraseBlock()
GlyphSetX() GlyphGetVersionInfo() GlyphSetContrast()
GlyphSetY() GlyphClearScreen() GlyphSetContrastBoost()
GlyphSetXY() GlyphInvertScreen()
GlyphGetXY() GlyphNormalScreen()

Figure 5.17 Summary of Glyph Application Program Interface.

103

6.1 LEARNING OBJECTIVES

A compiler generates an assembly language program to perform the work specified by our
source level (e.g., C) program. Examining the assembly code generated by the compiler
helps us understand what the resulting program is really doing, and gives us insights for
various optimizations and debugging.

However, it is very easy to get lost in an assembly code listing, so this chapter seeks to
give the reader a basic understanding of how C is implemented in RL78 assembly language
by the IAR C Compiler1 in Embedded Workbench. Other compilers will have different de-
tails, but the concepts remain the same.

6.2 MOTIVATION

Programmers who use high-level languages2 such as C, C��, and Java live in a make-
believe world. Meaningful names for functions and variables! All the memory you could
ask for! So many data types! Integers, floating point math operations (single and double
precision)! So many data structures! Arrays, lists, trees, sets, dictionaries! So many control
structures! Subroutines, if/then/else conditions, loops, break, and continue statements!
Iterators! Polymorphism! Exception handlers with try/catch blocks!

The processor lives in the reality of its native machine language. Each memory loca-
tion has its own numerical address, rather than a meaningful name. Like most embedded
processors, an RL78 processor only understands how to process integers, not floating point
values or even characters. It can copy data, add, subtract, multiply, divide, shift, rotate,
swap, compare, and jump to a new location in the program. We rely upon a compiler and
other parts of the toolchain shown in Figure 6.1 to translate from our make-believe world

C As Implemented in Assembly Language

Chapter SixChapter Six

1 Note that there is a trade-off between code readability and optimization. We have disabled some compiler op-
timizations in order to make the assembly code more intelligible. When creating production code the developer
would enable the optimizations in order to improve performance.
2 Some developers may claim that C is not a high-level language, but the authors would suggest these develop-
ers try programming in assembly language for perspective.

104 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

to the reality of the processor. In this chapter we examine what assembly code the compiler
generates to perform the work specified by our C source code.

Code
Generator

Linker

Source Files

Source Files

Executable
FilesCompiler

Assembly
Files Assembler

Object
Files

Figure 6.1 Overview of software compilation process for a C program.

6.3 WHAT MEMORY DOES A PROGRAM NEED?

1. int a, b;
2. const char c = 123;
3. int d = 31;
4. void main(void) {
5. int e;
6. e = d + 7;
7. a = e + 29999;
8. printf(“Hello!”);
9. }

Consider the C source code of the program fragment listed above. After it is compiled to an
executable image it will contain instructions and data. It will use the microcontroller’s
memory various ways, so it needs different types. We are concerned with two major as-
pects of the information.

� Can it change as the program executes?
� How long does it need to exist?

6.3.1 Can the Information Change?

Some of the memory will contain values which can never change as the program runs.
These go into read-only, non-volatile memory:

� Program instructions,3 such as those to add seven to d and save the result in e’s
location.

3 This excludes self-modifying code.

CHAPTER 6 / C AS IMPLEMENTED IN ASSEMBLY LANGUAGE 105

� Constant character strings (“Hello!”) and constant data variables (c).
� Constant operands which are represented as immediate data values in an instruc-

tion (7, 29999).
� Data values for initializing variables (31).

Other memory will contain values which may change as the program runs. These go
into RAM, which is read/write memory.

� Variables (a, b, d, e);
� Other information which is needed at run time (e.g., intermediate computations,

return address for a subroutine, function arguments).

More information is available in the Segment Reference of the C Compiler Manual.

6.3.2 How Long Does the Information Exist?

We need to differentiate between instructions and data, as they are used differently.
How long does the program instruction exist?

� In statically-linked programs all needed functions are present for the entire exe-
cution of the program. For the RL78 and many other microcontroller families, this
is the norm.

� General-purpose operating systems and some embedded operating systems sup-
port dynamically-linked programs to allow code modules to be loaded and
unloaded as needed. This reduces memory requirements and provides other
benefits at the expense of greater operating system and software toolchain
complexity.

How long does the data exist? There are three common storage classes of data, classified
by lifetime:

� Statically allocated data (also called static) exists as long as the program is run-
ning. Each variable has its own permanent location in memory.

� Automatically allocated data (also called automatic) exists only as long as the
procedure which declared it exists. There is no space allocated for the data before
the procedure begins execution, or after the procedure completes execution.

� Dynamically allocated data exists from when it is explicitly created to when it is
explicitly destroyed.

One could write a program where all data is static, but this would waste a tremendous
amount of memory. Instead, high-level languages reuse memory. The system’s memory is

106 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

divided into up to three sections: one for static data, one for the call stack, and one for the
memory heap.

Automatic data is called that because space is automatically allocated in the call
stack by the program upon beginning the procedure and automatically deallocated upon
completing the procedure. Dynamically allocated memory is handled by the programmer
through calls to allocate and deallocate memory from the heap.

6.3.3 Example of Memory Allocation

Now we are ready to see how the program listed above uses memory. The details are shown in
Figure 6.2.

Zero-Initialized
Data

Initialized Data

Stack

Heap Data

Initialization
Data

Constant Data

Startup and
Runtime Library

Code

Code

RAM Flash ROM

int a, b;

const char c = 123;

int d = 31;

void main (void) {

int e;

e = d + 7;

a = e + 29999;

printf (”Hello!”);

}

Figure 6.2 Program code and data use both RAM and flash ROM.

� Variables a and b are static, so each is given its own fixed location in RAM. Since
they are not given initial values in the C program, they are allocated in the zero-
initalized data section. Later we will see that the C run-time start-up module takes
care of copying this data.

� Variable d is static, so it is given its own fixed location in RAM. It is given an ini-
tial value of 31, which is stored in ROM in the initialization data section. Later we
will see that the C run-time start-up module takes care of copying this data.

CHAPTER 6 / C AS IMPLEMENTED IN ASSEMBLY LANGUAGE 107

� Variable e is declared in a function, so it is an automatic variable. It will only exist
while the function main exists. The compiler will generate code to allocate and
deallocate its space in the stack as the function main begins ({) and ends (}). Of
course, this code is placed in the code section of ROM.

� Instructions for the additions and storing the results in variables are located in the
code section of flash ROM.

� The literal values 7 and 29999 are encoded as immediate operands which are part
of the RL78 machine instructions. Hence they are stored in the code section of
flash ROM.

� The instructions for calling the printf subroutine (and instructions for the printf
subroutine itself) are stored in the code section flash ROM.

� The string literal “Hello!” is stored in the constant data section of flash ROM.
� If we dynamically allocated memory with malloc or calloc it would be located in

the heap data section of RAM.

6.3.4 Type and Class Qualifiers

The automatic classifications of data provided above are usually just what we need, but
sometimes we need to provide a bit more information to the compiler so it generates better
code. Other times, we wish to specify that variables must be handled carefully during opti-
mization to ensure correct program behavior. There are several keywords we can use to
modify the variable types (const, volatile) and storage class (static).

6.3.4.1 Const

A const variable is never written by the program. It is only read by the program. Marking
a variable as const may enable the compiler to place it in ROM, saving space in valuable
RAM. Some compilers are able to determine if variables are actually consts, but using this
qualifier guarantees the variable will be handled as a const.

6.3.4.2 Volatile

A volatile variable can be changed by something outside of normal program flow. For ex-
ample, an ISR could change the variable, or this could actually be a hardware register
which changes in response to external signals. Compilers treat volatile variables carefully,
disabling optimizations which could lead to not getting the latest version of the variable.

6.3.4.3 Static

A static variable which is declared within a function is only visible within the function in
which it is declared (like an automatic variable), but it retains its value from one invocation

108 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

to the next (like a static variable). If the variable is initialized, that initialization only occurs
the first time the function executes. After that the static variable retains its most recent value.

6.3.5 Program Linking

The last tool in the toolchain of Figure 6.1 is the linker. It combines all of the necessary ob-
ject files to create an executable file image which can be downloaded into the MCU’s flash
memory. The linker takes care of arranging data in memory and resolving addresses. The
linker creates an output file called a map file to describe each compilation module’s mem-
ory requirements and allocations, along with other detailed information. We will examine
this map file in the chapter on speed optimization. We can access this file in IAR Embed-
ded Workbench as shown in Figure 6.3.

Figure 6.3 Accessing the map file.

Figure 6.4 Map file summary of memory requirements.

A very useful part of the map file (located at the end) is the summary of the memory re-
quirements, grouped into CODE and CONST (which are located in Flash ROM) and
DATA (which is located in RAM). In the example of Figure 6.4, we see that the program
requires 1857 bytes of RAM and 7303 � 1747 � 9050 bytes of Flash ROM.

CHAPTER 6 / C AS IMPLEMENTED IN ASSEMBLY LANGUAGE 109

Figure 6.5 Map file example for module ST7579_LCD.

If a program uses too much memory, first the compiler’s options should be set to optimize
for size. If the resulting program is still too large, the next step is to examine the contents
of the map file to determine which modules use the most space. We will get the biggest
payoff if we start optimizing the largest functions.

For example, Figure 6.5 shows a portion of the map file for the program
YRKDRL78G13_Theremin_Demo, and specifically for the module ST7579_LCD. We see

110 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

that the function ST7579 has a code segment starting at 0x0808 and ending at 0x087F. Its
length is 0x78 bytes (120 bytes). By examining the map file (preferably by processing it
with an automated tool) we can determine which modules require the most memory.

6.3.6 C Run-Time Start-Up Module

When the processor is first turned on it will start executing the code at a fixed address de-
fined by the reset vector. The code in your main function cannot run immediately, as the
hardware and the C run-time environment need to be set up. The start-up module per-
forms these initialization tasks and then calls the main function.

6.3.6.1 Initialize Hardware

The stack pointer is initialized to ensure that the processor is able to use the stack to call
and return from subroutine and ISRs, and save and restore data. The stack space may also
be initialized to a fixed pattern to simplify later debugging and stack size measurement.
Some user-defined basic microcontroller configuration may also be performed with a
customizable _low_level_init function. This function runs very early in system start-up.

6.3.6.2 Initialize C or C�� Run-Time Environment

Zero-Initialized
Data
a, b

Initialized Data
d

Stack
e

Heap Data

Initialization
Data
31

Constant Data
c: 123
Hello!

Startup and
Runtime Library

Code

Code
ADD A, #7

ADDW
AX, #29999

RAM Flash ROM

Fill with
zeros

Copy

Figure 6.6 C start-up routine zeroes out or copies data sections to initialize them.

CHAPTER 6 / C AS IMPLEMENTED IN ASSEMBLY LANGUAGE 111

Consider the following global static variable declaration “int d � 31;”. This variable will
be allocated space in RAM. When the MCU comes out of reset, the RAM contents could
be anything. The program expects variable d to be initialized to a value of 5, so something
needs to make that happen. In addition, the standards for the C and C�� programming
languages define that static variables without program-specified initial values (e.g., a, b, c)
must be be initialized to zero. To ensure this, the start-up code needs to perform the fol-
lowing steps, as illustrated in Figure 6.6:

� Copy the initial values of initialized static variables from ROM into RAM.
� Write zeroes to uninitialized static variables.

There are other run-time initializations which may need to be performed. Heap memory
must be initialized. If a C�� program is compiled, then static objects need to be con-
structed, so their constructors must be called. After these initializations are performed, the
start-up routine calls the main function as a subroutine.

6.4 ACCESSING DATA

Let’s take a look at some of the assembly code generated for the C code for accessing
static and automatic variables and dereferencing pointers. We follow a variable naming
convention for clarity; s and a indicate static or automatic, and i and p indicate integer
or pointer.

1. int siA;
2.
3. void static_auto_local() {
4. int aiB;
5. static int siC = 3;
6. int * apD;
7. int aiE = 4, aiF = 5, aiG = 6;
8.
9. siA = 2;
10. aiB = siC + siA;
11. apD = &aiB;
12. (*apD)++;
13. apD = &siC;
14. (*apD) += 9;
15. apD = &siA;
16. apD = &aiE;
17. apD = &aiF;
18. apD = &aiG;

112 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

19. (*apD)++;
20. aiE += 7;
21. *apD = aiE + aiF;
22. }

6.4.1 Static Variables

Static variables have fixed addresses. The RL78 addressing modes which support this in-
clude direct addressing. There are different direct addressing modes (short, register, or ex-
tended) depending on how much of the address needs to be specified in the instruction. The
compiler and linker try to place variables so that the resulting code will use the shortest and
fastest addressing mode.

1. // 16 siA = 2;
2. MOVW AX, #0x2
3. MOVW N:siA, AX
4. // 17 aiB = siC + siA;
5. MOVW AX, N:??siC
6. ADDW AX, N:siA

In our example, variables siA and siC are static. We see that they are referenced with direct ad-
dressing in the assembly code by using their labels with some prefixes (N:??C_static_local,
N:A_static). The assembler and linker convert these labels to numerical addresses. N: indi-
cates that near data memory model is to be used.

6.4.2 Automatic Variables

Automatic variables may be located in registers or on the stack. If located on the stack, they
can be accessed based on an offset from the stack pointer. As shown in Figure 6.7, the
RL78 architecture has a based addressing mode which adds the SP with an unsigned byte
offset to create the target address in the range F0000H to FFFFFFH. The maximum offset
is 255, so this limits the stack frame size which can be accessed efficiently. Supporting a
larger stack frame would require additional address calculation operations. Later in this
chapter we discuss the other information which is also located in the stack frame. This in-
formation may also be accessed with this addressing mode.

1. ; Auto size: 8
2. SUBW SP, #0x8
3. // 11 int aiB;

CHAPTER 6 / C AS IMPLEMENTED IN ASSEMBLY LANGUAGE 113

4. // 12 static int siC = 3;
5. // 13 int * apD;
6. // 14 int aiE = 4, aiF = 5, aiG = 6;
7. MOVW AX, #0x4
8. MOVW [SP], AX
9. MOVW AX, #0x5
10. MOVW [SP + 0x02], AX
11. MOVW AX, #0x6
12. MOVW [SP + 0x04], AX
...

13. // 17 aiB = siC + siA;
...

14. MOVW [SP + 0x06], AX

In our example, variables aiB, apD, aiE, aiF, and aiG are automatics. Eight bytes of space
are allocated on the stack for them in line 2. The variables are allocated one word each:
aiB at SP � 6, aiG at SP � 4, aiF at SP � 2, and aiE at SP. What happened to apD? Was it
allocated any space on the stack? This is left as a homework problem.

6.4.3 Manipulating and Dereferencing Pointers

A pointer is simply a variable which holds the address of the data we wish to access. In our
example, apD is a pointer to an integer.

SP

OP code

byte

FFFFFH

F0000H

Target memory

Memory

Figure 6.7 Automatic variables are located on the stack and accessed using the stack pointer
register.

114 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

1. // 18 apD = & aiB;
2. MOVW AX, SP
3. ADDW AX, #0x6
4. MOVW HL, AX
5. // 19 (*apD)++;
6. MOVW AX, [HL]
7. INCW AX
8. MOVW [HL], AX
9. // 20 apD = &siC;
10. MOVW HL, #??siC
11. // 21 (*apD) += 9;
12. MOVW AX, [HL]
13. ADDW AX, #0x9
14. MOVW [HL], AX
...

� Addressing an automatic variable aiB in lines 2 through 4 involves adding an off-
set and the stack pointer to form the target address.

� Incrementing automatic variable aiB in lines 6 through 8 involves loading the
AX register with the value from memory, incrementing it, and saving it back to
memory. Why doesn’t this use the form INCW [HL]? Is it due to a low setting for
compiler optimizations, or is there a different reason? This is left as a homework
question.

� Addressing a static variable siC in line 9 involves simply loading the address as an
immediate operand.

� Adding nine to the variable involves loading the AX register with the
value from memory, adding nine, and saving the result. Note that there is no in-
struction ADDW [HL], #9—all additions must use the AX register, as it is the
accumulator.

6.4.4 Accessing Arrays

In order to understand how both one- and two-dimensional arrays are accessed, we exam-
ine the following C function:

1. void arrays(unsigned char n, unsigned char j) {
2. volatile int i;
3. i = buff2[0] + buff2[n];
4. i += buff3[n][j];
5. }

CHAPTER 6 / C AS IMPLEMENTED IN ASSEMBLY LANGUAGE 115

6.4.4.1 1-Dimensional Arrays

ADDRESS CONTENTS

buff2 buff2[0]

buff2 � 1 buff2[1]

buff2 � 2 buff2[2]

Figure 6.8 Memory layout of char buff2[3].

To access element number i of a one-dimensional array, we need to calculate the address of
the element. This address is the sum of two parts:

� The start of the array, which can be referred to by the array name.
� The offset, which is calculated by multiplying the index i by the element size. In an

array of chars, each element is one byte long. In an array of floats, each element is
four bytes long.

...
1. MOV C, A
...

2. // 60 i = buff2[0] + buff2[n];
3. MOV A, (buff2 & 0xFFFF)[C]
4. MOV L, A
5. MOV A, N:buff2
6. MOV H, #0x0
7. MOV X, A
8. CLRB A
9. ADDW AX, HL

In this code we are adding two different elements of the array: buff2[0] and buff2[n].

� The second term (buff2[n]) is located at address buff2 � element_size*n. As this
is an array of chars, each element is one byte, so we do not need to multiply n and
the equation simplifies to buff2 � n. The function is passed the value of n as an ar-
gument through register A. Line 1 in the listing copies it to register C to save it.
Line 3 computes the address of element n by using based addressing to add C to
the start of the array (buff2 & 0xFFFF) to form the address. The byte at memory

116 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

location C � (buff2 & 0xFFFF) is read and loaded into register A. Line 4 saves this
byte in register L, since A will be used for other purposes. Note that the variable i,
which is assigned the result of the addition, is an int (16 bits long). The type pro-
motion rules of C state that we must promote each term from char to int before ad-
dition. So, line 6 loads register H with zero, so the register pair HL contains the
16-bit integer value promoted from buff2[n].

� The first term (buff2[0]) is always at address buff2. The offset is zero, since we are
accessing element 0. Line 5 loads register A with the byte at memory location
buff2 using near absolute addressing. Line 7 moves A’s value to register X, which
is the low byte of the AX register pair. Line 8 loads register A with 0, completing
the promotion to a 16-bit integer.

� Now that AX holds the value of buff2[0] and HL holds the value of buff2[n] we can
add them, using the ADDW instruction of line 9. The result is in register pair AX.

6.4.4.2 2-Dimensional Arrays

[0][0]

[0][1]

[0][2]

[1][0]

[1][1]

[1][2]

[0][0] [0][1] [0][2]

[1][0] [1][1] [1][2]

Columns

R
ow

s

Figure 6.9 A generic 2-dimensional array as laid out in memory.

In C, two dimensional arrays are laid out in memory in a row-major form, which means
that each row is stored contiguously, as shown in Figure 6.9. The first element is stored be-
ginning at the smallest address. We can look at a specific example—the array declared by
int buff3[5][7] is shown in Figure 6.10. Each element is 2 bytes long since the base type is
int. There are five rows and seven columns, so a total of 2 * 5 * 7 � 70 bytes are needed to
hold the array.

CHAPTER 6 / C AS IMPLEMENTED IN ASSEMBLY LANGUAGE 117

Accessing an element of a two-dimensional array is similar to the one-dimensional case,
but there are two offsets—one from the row index and another from the column index. The
column offset calculation is the same as above. The row offset is calculated by multiplying
the row index by the size of a row in bytes, which is the number of columns times the ele-
ment size in bytes. Let’s examine the code the compiler generates to access buff3, and let’s
assume n � 1 and j � 4.

1. // 61 i += buff3[n][j];
2. MOV D, #0x0
3. MOVW [SP], AX
4. MOVW AX, DE

ADDRESS CONTENTS

buff3 buff3[0][0]

buff3�1

buff3�2 buff3[0][1]

buff3�3

(etc.)

buff3�10 buff3[0][5]

buff3�11

buff3�12 buff3[0][6]

buff3�13

buff3�14 buff3[1][0]

buff3�15

buff3�16 buff3[1][1]

buff3�17

buff3�18 buff3[1][2]

buff3�19

(etc.)

buff3�68 buff3[4][6]

buff3�69

Figure 6.10 Memory layout for array int buff3[5][7].

118 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

5. ADDW AX, AX
6. MOVW DE, AX
7. MOV A, C
8. MOV X, A
9. CLRB A
10. MOVW BC, #0xE
11. ; * Stack frame (at entry) *
12. ; Param size: 0
13. ; Auto size: 2
14. CALL N:?I_MUL_L02
15. ADDW AX, #buff3
16. ADDW AX, DE
17. MOVW HL, AX
18. MOVW AX, [HL]
19. MOVW HL, AX
20. MOVW AX, [SP]
21. ADDW AX, HL
22. MOVW [SP], AX

The column offset is calculated as follows:

� Line 3 saves the result of the previous calculation (buff2[0]�buff2[n]) in tempo-
rary storage on stack.

� Lines 2 and 4 extend j (stored initially in register E) to 16 bits and puts the result in
register AX.

� Line 5 calculates the byte offset for the column index. It adds AX to AX (multi-
plying it by two) since each element in this array is a 2-byte long integer.

� Line 6 saves this offset in register DE. If j is four, then the column offset will be
2 * 4 � 8.

The row offset is calculated as follows:

� Lines 7 through 9 extend the row index n (stored initially in C) to a 16-bit value
stored in AX.

� Line 14 calls a subroutine to multiply n by the row length in bytes (14, or 0x0E) to
find the row offset in bytes. If n is 1, then the row offset will be 1 * 14 � 14.

The addresses are now added together to find the address of buff3[n][j]:

� Line 15 adds the array’s base address to the row offset.
� Line 16 adds in the column offset to create the complete address. The resulting ad-

dress is buff3�14�8 � buff3�22.

CHAPTER 6 / C AS IMPLEMENTED IN ASSEMBLY LANGUAGE 119

� Lines 17 and 18 use register pair HL to access the array element and place it in AX.
� Line 19 moves the array element to HL, freeing up AX for use.
� Line 20 reloads AX with the result of the previous calculation (saved in line 3).
� Line 21 adds AX and HL, performing the �� operation of the C source code.
� Line 22 saves the result on the stack.

6.5 FUNCTIONS

We have seen some of the code generated for the array-referencing function arrays(), but
not all of it. The compiler generates the following RL78 assembly code prologue before
(lines 1–8) and epilogue after (lines 9–13) the listings of the previous section:

1. // 53 void arrays(unsigned char n, unsigned char j) {
2. arrays:
3. PUSH BC
4. PUSH DE
5. MOV C, A
6. PUSH AX
7. MOV A, B
8. MOV E, A
... (body deleted)

9. // 62 }
10. ADDW SP, #0x2
11. POP DE
12. POP BC
13. RET

This code handles other “housekeeping” activities which are needed to make the function
operate correctly:

� Sharing general purpose registers
� Handling function arguments and return values
� Allocating temporary storage space on the stack
� Returning control to the calling function

6.5.1 Activation Records

Some of these housekeeping activities need space to store information while the function
executes. The compiler generates code to create an activation record to hold information

120 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

about each active function. It is created in part by both the calling function and the func-
tion’s prologue.

Lower
address

Free stack space

Activation record for
current function

Local storage

Return address W Stack pointer
after call
instruction
executes

Arguments (optional)

Activation record for
caller function

Local storage

Return address

Arguments (optional)

Activation record for
caller’s caller
function

Local storage

Return address

Arguments (optional)

Activation record for
caller’s caller’s caller
function

Local storage

Higher
address

Return address

Arguments (optional)

Figure 6.11 A function’s activation record or stack frame.

Let’s examine the prologue and epilogue to see how they create and delete the activation
record for the function arrays(). Lines 1 through 8 are the prologue, while lines 9 through
13 are the epilogue.

The function’s activation record looks like the chart in Figure 6.12 as the prologue
executes:

� Line 1 is a comment showing the original C source code.
� Line 2 is a label which marks the beginning of the code for the function.
� Lines 3 and 4 save register pairs BC and DE onto the stack (with PUSH instruc-

tions); they are restored by the corresponding POP instructions in lines 12 and 11,
respectively.

� Lines 5 through 8 process the function arguments n and j. Register A holds argu-
ment n, while register B holds argument j. Line 6 saves register pair AX on the

CHAPTER 6 / C AS IMPLEMENTED IN ASSEMBLY LANGUAGE 121

stack because register A will be used later in multiple places and modified (for in-
dexing buff2 and buff3). Lines 5, 7, and 8 move the arguments to other registers for
temporary storage.

Note that the byte at SP � 9 is not used. This is because the stack is only word-
addressable, so the CALL instruction must use 32 bits to save the 20-bit program counter
value.

Now let’s look at the epilogue, which needs to restore the stack pointer to its original
value so that the RET instruction pops the correct information off the stack to return to the
calling function.

The function’s activation record looks like the chart in Figure 6.13 as the epilogue
executes:

� Line 10 adds 2 to the stack pointer, deallocating the space used to save AX since
the function does not need it anymore.

� Lines 11 and 12 pop values off the stack to restore the DE and BC registers.
� Finally, line 13 is a return from subroutine address which pops the program

counter from the stack to resume execution in the calling function.

SP�2 Free space

SP�1

SP Saved AX W Stack pointer after PUSH AX (line 7)

SP�1

SP�2 Saved DE W Stack pointer after PUSH DE (line 4)

SP�3

SP�4 Saved BC W Stack pointer after PUSH BC (line 3)

SP�5

SP�6 Return address W Stack pointer at line 2 (before prologue)

SP�7

SP�8

SP�9 Unused (0)

SP�10 Top of caller’s stack frame

Figure 6.12 Activation record for function “arrays” while executing prologue.

122 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

6.5.2 Register Use Conventions

Notice that various registers were saved and restored in this code. There are certain rules
which the compiler follows in order to create its code which is modular, isolated, and
easily composed into a program without requiring excessive analysis. One such set of
rules deals with how general-purpose and segment registers are used (A, B, C, D, E, H,
L, X, CS, ES).

� Can a called function modify a register without restoring its value? If so, then the
calling function must save that register (typically on the stack) before calling the
function.

� Must a called function save and restore any register it uses? If so, then the calling
function does not need to save any registers.

Typically some registers are specified in each category. For the IAR EW C compiler, a func-
tion can use scratch registers without saving them beforehand (AX, HL, CS, ES). A func-
tion must save and restore the preserved registers: BC, DE.

SP�2 Free space

SP�1

SP Saved AX W Stack pointer before line 10

SP�1

SP�2 Saved DE W Stack pointer after ADDW SP, #02 (line 10)

SP�3

SP�4 Saved BC W Stack pointer after POP DE (line 11)

SP�5

SP�6 Return address W Stack pointer after POP BC (line 12)

SP�7

SP�8

SP�9 Unused (0)

SP�10 Top of caller’s stack frame

Figure 6.13 Activation record for function “arrays” while executing epilogue.

CHAPTER 6 / C AS IMPLEMENTED IN ASSEMBLY LANGUAGE 123

6.5.3 Calling Subroutines

In order to call a subroutine, the calling subroutine must specify the function arguments
(if any) and then execute the CALL instruction (which saves the return address, which in-
dicates the instruction following the CALL instruction).

How does a function pass arguments to subroutines—where should the arguments be
placed? There are multiple possible solutions.

� Using fixed (i.e., static) memory locations per function argument prevents recursion.
� Using stack memory supports recursion but, memory accesses are slower than reg-

ister access.
� Using registers is faster than memory, but recursion requires saving and restoring

registers from the stack.

The compiler tries to use registers rather than the stack to pass arguments to subroutines, as
this is faster. Some arguments are always passed on the stack: structures, unions and
classes, except for those 1, 2, or 4 bytes long. Functions with unnamed arguments are also
passed on the stack.

TABLE 6.1 Locations of Function Arguments.

ARGUMENT SIZE REGISTERS USED FOR PASSING

8 bits A, B, C, X, D, E

16 bits AX, BC, DE

24 bits Stack

32 bits BC:AX

Larger Stack

Registers are assigned by traversing the argument list from left to right. The stack pointer
points to the first argument, and the remaining arguments at higher addresses. All objects
on the stack are word-aligned (the address is a multiple of two), so single byte objects will
take up two bytes. Arguments larger than 32 bits are passed on the stack.

After placing all arguments in registers or on the stack, the calling function will exe-
cute a CALL instruction, which pushes the return address (the address of the next instruc-
tion after the call) onto the stack.

124 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

6.5.4 Returning Results

Some functions return a result. How is this information passed back to the calling func-
tion? Again, registers are used if possible; otherwise the stack is used.

TABLE 6.2 Location of Function Return Value

RETURN VALUE SIZE REGISTERS USED FOR PASSING

8 bits A

16 bits AX

24 bits A:HL

32 bits BC:AX

Larger Stack

6.5.5 Example of Passing Arguments and Returning Results

Let’s take a look at how arguments are passed to functions and results are returned.

1. int fun3(int arg3_1, int arg3_2, int arg3_3, int arg3_4) {
2. return arg3_1*arg3_2*arg3_3*arg3_4;
3. }
4.
5. int fun2(int arg2_1, int arg2_2) {
6. int i;
7. arg2_2 += fun3(arg2_1, 4, 5, 6);
8. return arg2_2;
9. }

The C code above shows fun2 calling fun3 with four arguments. The relevant RL78 as-
sembly code appears below:

1. // 82 int fun2(int arg2_1, int arg2_2) {
2. fun2:
3. PUSH AX
4. PUSH BC
5. ...
6. // 88 arg2_2 += fun3(arg2_1, 4, 5, 6);
7. ??fun1_8:

CHAPTER 6 / C AS IMPLEMENTED IN ASSEMBLY LANGUAGE 125

8. MOVW AX, #0x6
9. PUSH AX
10. MOVW DE, #0x5
11. MOVW BC, #0x4
12. MOVW AX, [SP + 0x04]
13. CALL fun3
14. MOVW HL, AX
15. MOVW AX, [SP]
16. ADDW AX, HL
17. MOVW [SP], AX
18. ...

SP Return address W Stack pointer before line 3 AX arg2_1

SP�1 BC arg2_2

SP�2 DE

SP�3 HL

Figure 6.14 Stack and registers on entry to fun2.

Figure 6.14 shows the stack and registers upon entry to fun2. Argument arg2_1 is in regis-
ter AX and argument arg2_2 is in BC, and the return address is on the top of the stack.

SP arg2_2 W Stack pointer before line 8

SP�1

SP�2 arg2_1

SP�3

SP�4 Return address AX arg2_1

SP�5 BC arg2_2

SP�6 DE

SP�7 HL

Figure 6.15 Stack and registers after saving arg2_1 and arg2_2.

Figure 6.15 shows that lines 3 and 4 have pushed arguments arg2_1 (passed in AX) and
arg2_2 (passed in BC) onto the stack so the registers can be used for other purposes, and to
save the original values of the arguments.

126 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

Figure 6.16 shows the stack and registers as they have been prepared by lines 8 through
12 before calling subroutine fun3.

� Lines 8 and 9 create and push argument arg3_4 (with a value of 6) onto the stack.
� Line 10 loads argument arg3_3 (with a value of 5) into register DE.
� Line11 loads argument arg3_2 (with a value of 4) into register BC.
� Line 12 loads argument arg3_1 (which is arg2_1, which was saved on the stack in

line 2) from the stack into register AX.
� Line 13 calls the subroutine fun3.

SP arg3_4 (6) W Stack pointer before line 13

SP�1

SP�2 arg2_2

SP�3

SP�4 arg2_1

SP�5

SP�6 Return address AX arg3_1 (arg2_1)

SP�7 BC arg3_2 (4)

SP�8 DE arg3_3 (5)

SP�9 HL

Figure 6.16 Stack and registers loaded with arguments to fun3, ready to execute CALL fun3.

Figure 6.17 Stack and registers after return from subroutine fun3.

SP arg2_2 W Stack pointer before line 14

SP�1

SP�2 arg2_1

SP�3

SP�4 Return address AX fun3 result

SP�5 BC

SP�6 DE

SP�7 HL

CHAPTER 6 / C AS IMPLEMENTED IN ASSEMBLY LANGUAGE 127

After subroutine fun3 returns, note that it has adjusted the stack pointer to remove argu-
ment arg3_4 from the stack. The stack pointer is now pointing to arg2_2 again, ready for
line 15.

� Line 14 copies the result returned from fun3 from register AX into register HL.
� Line 15 copies the value of arg2_2 (which was saved onto the stack in line 4) to

register AX.
� Line 16 adds arg2_2 and the result of fun3.
� Line 17 saves the sum on the stack in the location for arg2_2.
� Note that line 16 ensures that the return value for fun2 is located in register AX

(the correct location for returning a 16-bit result).

6.6 CONTROL STRUCTURES

A program’s control flow describes which instructions are executed. Normal control flow
is sequential; the processor will step sequentially through the instructions in memory. In-
structions such as jumps, branches, calls, and returns change the control flow. We have al-
ready examined subroutine calls and returns, so let’s examine selection and iteration.

6.6.1 Selection

C provides two mechanisms for selecting one of multiple possible control flows: the if/else
and the switch statements.

6.6.1.1 If/Else

condition

action_if action_else

T F

Figure 6.18 If/Else statement flowchart.

128 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

Here we see how a condition test is performed:

� Line 2 loads the value of variable x into register AX from the stack.
� Line 3 compares it with 0, setting the Z flag if it is equal.
� Line 4 prepares for the if and else cases. They both modify the value of variable y,

so the compiler loads the value ofY from the stack into register AX. This load does
not change the value of the condition codes.

� Line 5 is a conditional branch which will jump to label ??arrays_0 if the Z flag is
set (if variable x is 0), or fall through to the next instruction otherwise.

� Lines 6 through 9 are comments.
� Line 10 is the “if” case. It adds one to AX by incrementing it.
� Line 11 branches over the “else” case to the label ??arrays_1.
� Line 14 is the “else” case. It subtracts one from AX by decrementing it.
� Line 14 is where the control flow merges again. Here the newly modified value of

AX is saved back into variable y’s location in the stack frame.

1. // 18 if (x){
2. MOVW AX, [SP + 0x02]
3. CMPW AX, #0x0
4. MOVW AX, [SP]
5. BZ ??arrays_0
6. ; * Stack frame (at entry) *
7. ; Param size: 0
8. ; Auto size: 6
9. // 19 y++;
10. INCW AX
11. BR S:??arrays_1
12. // 20 } else {
13. // 21 y--;
14. ??arrays_0:
15. DECW AX
16. ??arrays_1:
17. MOVW [SP], AX
18. // 22 }

6.6.1.2 Switch

The switch statement allows source code to be divided cleanly into separate cases. Here is
an example code segment:

1. switch (x) {
2. case 1:

CHAPTER 6 / C AS IMPLEMENTED IN ASSEMBLY LANGUAGE 129

3. y += 3;
4. break;
5. case 31:
6. y -= 5;
7. break;
8. default:
9. y-;
10. break;
11. }

The corresponding assembly code is shown below and operates as follows:

� Lines 2 and 3 load variable x from the stack frame into register AX and subtract
one from it.

� If x was 1, then the subtraction will result in zero, setting the Z flag, so the BZ in-
struction in line 4 (conditional branch if zero) will be taken and the code will jump
to label arrays_2.

� Label arrays_2 starts the case for x ��1, implemented in lines 8 through 16.
These lines load Y from the stack frame, add three, save it back to the stack frame,
and then jump to arrays_5, which is the beginning of the next code segment.

= const1?

evaluate
expression

T
= const2?

action3

action1

action2

T

F

F

Figure 6.19 Switch statement flowchart.

130 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

� If x was not 1, then the BZ instruction in line 4 did not execute, so line 5 executes,
subtracting 30 (0x1E) from AX.

� If x was 31 initially, then these two subtractions (1 and 30) will bring it to zero, so
the Z flag will be set and the conditional branch (BZ) in line 6 will be taken so the
code jumps to label arrays_3.

� Label arrays_3 starts the case for x �� 31, implemented in lines 17 through 22.
These lines load variable y and subtract five (by adding a negative 5), save it, and
then jump to arrays_5, which is the beginning of the next code segment.

� If x was not 31 or 1 initially, then neither of the conditional branches (lines 4 and 6)
was taken, so line 7 will execute. This is an unconditional branch to the default case
at labels arrays_4, in lines 26 to 30. This default case decrements the variable y.

1. // 25 switch (x) {
2. MOVW AX, [SP]
3. SUBW AX, #0x1
4. BZ ??arrays_2
5. SUBW AX, #0x1E
6. BZ ??arrays_3
7. BR S:??arrays_4
8. // 26 case 1:
9. // 27 y += 3;
10. ??arrays_2:
11. MOVW AX, [SP + 0x02]
12. ADDW AX, #0x3
13. ??control_structures_0:
14. MOVW [SP + 0x02], AX
15. // 28 break;
16. BR S:??arrays_5
17. // 29 case 31:
18. // 30 y -= 5;
19. ??arrays_3:
20. MOVW AX, [SP + 0x02]
21. ADDW AX, #0xFFFB
22. BR S:??control_structures_0
23. // 31 break;
24. // 32 default:
25. // 33 y--;
26. ??arrays_4:
27. MOVW AX, [SP + 0x02]
28. DECW AX
29. BR S:??control_structures_0

CHAPTER 6 / C AS IMPLEMENTED IN ASSEMBLY LANGUAGE 131

30. // 34 break;
31. // 35 }
32. ...
33. ??arrays_5:

6.6.2 Iteration

C provides three looping constructs to repeat the execution of code: while, do/while,
and for.

6.6.2.1 While

test

loop_body

T

F

Figure 6.20 While loop flowchart.

The while loop is a top-test loop; if the test is false, then the loop body will not execute.
Here is an example code segment:

1. while (x < 10) {
2. x = x + 1;
3. }

The corresponding assembly code is shown below and operates as follows:

� The first item to note is that the entry point for this code is line 8 (label arrays_5)!
This is the target of the final branches in the precious code example. The code is

132 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

laid out with the test at the bottom, but execution begins with the test. This is done
to make the code run faster on average.

� Line 9 loads variable x from the stack into register AX and compares it with
10 (0x0A).

� Line 10 repeats the loop if AX is less than 10 by branching to line 3 (label
control_structures_1).

� Lines 4 through 6 are the body of the loop, which loads x from stack memory, in-
crements it and saves it.

1. // 37 while (x < 10) {
2. // 38 x = x + 1;
3. ??control_structures_1:
4. MOVW AX, [SP]
5. INCW AX
6. MOVW [SP], AX
7. // 39 }
8. ??arrays_5:
9. MOVW AX, [SP]
10. CMPW AX, #0xA
11. BC ??control_structures_1

6.6.2.2 For

test

init

T

loop_body

re-init

F

Figure 6.21 For loop flowchart

CHAPTER 6 / C AS IMPLEMENTED IN ASSEMBLY LANGUAGE 133

The for loop is the most complicated.

� Line 2 performs initialization of variable i (stored in register pair AX) to zero.
� Line 3 copies the value of i to register pair HL.
� Line 6 loads the variable x from memory (at [SP]).
� Line 7 adds variable i to variable x.
� Line 8 saves variable x back to memory. If we had not declared x as a volatile vari-

able, the compiler would have optimized the code by keeping variable x in a regis-
ter to eliminate all of the extra MOVW instructions.

� Lines 9 through 13 copy variable i to the accumulator register AX to increment it
(i��), compare it against 10 (0x0A in hexadecimal) in the loop test (i < 10), and
save it back to register HL.

� Line 15 is the loop-closing branch instruction which will jump to label
control_structures_2 (line 5) if the tested condition (carry flag set) is true.

1. // 41 for (i = 0; i < 10; i++){
2. CLRW AX
3. MOVW HL, AX
4. // 42 x += i;
5. ??control_structures_2:
6. MOVW AX, [SP]
7. ADDW AX, HL
8. MOVW [SP], AX
9. // 43 }
10. MOVW AX, HL
11. INCW AX
12. CMPW AX, #0xA
13. MOVW HL, AX
14. BC ??control_structures_2

6.6.2.3 Do/While

The do/while loop is a bottom-test loop.

� Lines 4 through 7 load variable x from the stack frame into register pair AX, add
two (by incrementing twice), and save it back in the stack frame.

� Lines 9 and 10 load x from the stack frame into register pair AX, compare the
result to see if the loop condition is still true (i.e., if x � 20, which is 0x14 in
hexadecimal).

� Line 11 will branch to line 3 to repeat the loop if the condition is true.

134 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

1. // 45 do {
2. // 46 x += 2;
3. ??control_structures_3:
4. MOVW AX, [SP]
5. INCW AX
6. INCW AX
7. MOVW [SP], AX
8. // 47 } while (x < 20);
9. MOVW AX, [SP]
10. CMPW AX, #0x14
11. BC ??control_structures_3

6.7 RECAP

In this chapter we have seen how a C program is represented in assembly language. We
have seen how different parts of the program require different types of memory, how dif-
ferent classes of variables are stored and accessed, how functions are called, and how pro-
gram control-flow is implemented.

Test

loop_body

T F

Figure 6.22 Do/while loop flowchart.

CHAPTER 6 / C AS IMPLEMENTED IN ASSEMBLY LANGUAGE 135

6.8 EXERCISES

1. Examine the map file from a program of your choosing. How much of each type of
memory is used? Which functions or data variables dominate the size? How do
size requirements change as you tell the compiler to optimize for size, speed, or
not at all?

2. Compile a function which uses floating point division. How much space is re-
quired, and for which modules?

3. Was integer pointer apD from the example earlier in the chapter allocated any
stack space, or was it allocated to a register? Compile the source code and find out.
Can you affect this by changing the compiler’s optimization settings?

4. Investigate and try to explain why the code in the pointer manipulation and deref-
erencing example does not use INCW [HL].

5. Compile a program to calculate a Fibonacci sequence. How are arguments passed
to the subroutines? Draw a diagram showing each function’s activation record.
How large does the stack get?

6. Create the control flow graph using the assembly code of the Fibonacci sequence
program.

137

7.1 LEARNING OBJECTIVES

Embedded systems often measure physical parameters such as light intensity and tempera-
ture. These parameters are analog but the embedded system’s microcontroller requires dig-
ital values to work on. An Analog to Digital Converter (ADC) is used to convert those pa-
rameters into a digital form.

In this chapter we will learn about:

� How an analog value is represented digitally
� How successive approximation converts from analog to digital
� How to configure the RL78 MCU’s ADC peripheral
� How to architect the software when using the ADC and interrupts

7.2 BASIC CONCEPTS

A microcontroller represents information digitally: a voltage less than VDD/2 represents a log-
ical 0, while a voltage above VDD/2 represents a logical 1. An analog signal can represent an
infinite number of possible values. For example, consider an electronic thermometer with an
output voltage which is proportional to the temperature in Celsius: Vout � Temperature *
0.05 V/°C. At 5°C, Vout � 0.25 V. At 40°C, Vout � 2.0 V. At 40.1°C, Vout � 2.005 V. If we con-
nect this thermometer directly to a microcontroller’s digital input we will not be able to meas-
ure temperatures very accurately. In fact, we can only determine if the voltage is above or be-
low VDD/2. Assuming a supply voltage of 3.3 V, we can only determine if the temperature is
above or below (3.3 V/2)/(0.05 V/°C) � 33°C, throwing away all other temperature informa-
tion. In order to preserve this information we need a more sophisticated conversion approach.

7.2.1 Quantization

An ADC measures an analog input voltage and determines a digital (binary) value
which represents it best. This measurement process is called quantization. The conver-
sion is based on reference voltages which define the high (V�Ref) and low (V�Ref) ends

Converting From the Analog to the Digital Domain

Chapter SevenChapter Seven

138 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

of the input voltage range. Often microcontrollers have V�Ref connected to ground
(0 V). An input voltage of V�Ref or more will result in an output code which is all ones,
while an input voltage of V�Ref or less will result in an output code of all zeroes. An in-
termediate input voltage will result in the proportional binary code value. This is dis-
cussed in more detail below.

Analog Input

Reference Voltage

Digital Output (bits)

Figure 7.1 Simple analog to digital converter (ADC).

A block diagram for a simple ADC is shown in Figure 7.1. The number of bits in the digi-
tal output is called the resolution of the ADC. A 10-bit ADC produces an output with
10 bits, with 1024 (210) different binary outputs. Thus, in a 10-bit ADC, a range of input
voltages (analog) will map to a unique binary output (0000000000 to 1111111111).
A 12-bit ADC will have 4096 (212) unique binary outputs to represent 0 to 100 percent of
an analog input.

7.2.1.1 Transfer Function

The digital approximation for a particular analog input value can be found mathematically.
This can be useful as a guide to see if the ADC output obtained is correct.

If Vin is the sampled input voltage, V�ref is the upper end of the input voltage range,
V�ref is the lower end of the input voltage range, and N is the number of bits of resolution
in ADC, then the digital output n can be found using the following formula:

We can simplify this equation if V�ref is connected to ground (0 V):

n � int a Vin

V�ref
* 2N � 0.5b

n � int a Vin � V�ref

V�ref � V�ref
* 2N � 0.5b

CHAPTER 7 / CONVERTING FROM THE ANALOG TO THE DIGITAL DOMAIN 139

The RL78 ADC peripheral copies the result n (called the SAR value in the RL78) into the
AD conversion result register (ADCR) when the conversion completes. It left-aligns the
SAR value when storing it in ADCR.

The upper 8 bits of ADCR can be accessed as ADCRH, if an 8-bit conversion was
performed.

We can also reverse the equation to determine what range of voltages corresponds to
an ADCR value:

7.2.1.2 Quantization Error

Quantization usually introduces some error because each digital code (e.g., 0000101010)
corresponds to a range of analog input voltages. The term quantization error describes
how large the error can be, based on a codeword N bits long:

An ADC with higher resolution has more binary codes possible, which reduces the range
of voltages corresponding to each code. This reduces the quantization error.

7.2.2 Successive Approximation

Analog to digital conversion (quantization) can be performed using various methods, such as
flash conversion, dual slope integration, and successive approximation. The ADC method used
in RL78 MCUs is successive approximation. This method gives good resolution and speed.

In successive approximation the ADC performs a binary search to measure the input
voltage. The input voltage is repeatedly compared with a test voltage (generated by digital
to analog converter), until the closest approximation is found. Successive approximation
requires one comparison per output bits of the ADC; so a 10-bit ADC requires 10 compar-
isons to perform the A/D conversion.

This process can be understood better with an example. Let’s consider a system with a
reference voltage of 3.3 V. An input voltage of 2.5 V has to be converted to digital form and
the ADC used is 10-bit.

ADCR � SAR * 64

EQuantization �
1

2 * 2N * 100%

aADCR

64
� 0.5b �

AVREF

1024
� VAIN � aADCR

64
� 0.5b �

AVREF

1024

140 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

X
X
X
X
X
X
X
X
X

1
X
X
X
X
X
X
X
X
X

1
1
X
X
X
X
X
X
X
X

1
1
0
X
X
X
X
X
X
X

1
1
0
0
X
X
X
X
X
X

1
1
0
0
0
X
X
X
X
X

1
1
0
0
0
0
X
X
X
X

1
1
0
0
0
0
0
X
X
X

1
1
0
0
0
0
0
1
X
X

1
1
0
0
0
0
0
1
1
X

1
1
0
0
0
0
0
1
1
1

Analog

Input

Voltage

Start of Conversion Time

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

Figure 7.2 A/D Conversion using successive approximation.

TABLE 7.1 Analog to Digital Conversion Using Successive Approximation

CONVERSION
CYCLE

POSSIBLE INPUT
VOLTAGE RANGE

TEST
VOLTAGE

INPUT � TEST
VOLTAGE?

SUCCESSIVE
APPROXIMATION
REGISTER (SAR)

1 0 V–3.3 V 1.65 V Yes 1xxxxxxxxx

2 1.65 V–3.3 V 2.475 V Yes 11xxxxxxxx

3 2.475 V–3.3 V 2.888 V No 110xxxxxxx

4 2.475 V–2.888 V 2.682 V No 1100xxxxxx

5 2.475 V–2.682 V 2.579 V No 11000xxxxx

6 2.475 V–2.579 V 2.527 V No 110000xxxx

7 2.475 V–2.527 V 2.501 V No 1100000xxx

8 2.475 V–2.501 V 2.488 V Yes 11000001xx

9 2.488 V–2.501 V 2.495 V Yes 110000011x

10 2.495 V–2.501 V 2.498 V Yes 1100000111

CHAPTER 7 / CONVERTING FROM THE ANALOG TO THE DIGITAL DOMAIN 141

In the first conversion cycle, the ADC has no information about the possible value of the in-
put voltage (the result register is xxxxxxxxxx), so it chooses a test voltage half-way be-
tween the upper (3.3 V) and lower (0 V) reference voltages. This test voltage of 1.65 V is
generated by the DAC. The comparator then determines whether the test voltage (1.65 V)
or the input voltage (2.5 V) is higher. The input voltage is higher, so the ADC determines
that the first bit (MSB) of the conversion result is a 1, making the successive approximation
register (SAR) 1xxxxxxxxx.

In the second conversion cycle, the ADC now knows that the voltage is in the range
1.65 V to 3.3 V, so will split that range in half by setting the test voltage at the middle
(3.3 V � 1.65 V)/2 � 2.475 V. Since the input (2.5 V) is greater than the output from
DAC (2.475 V), the next bit of the result register is set to 1, making the SAR
11xxxxxxxx.

In the third conversion cycle, the ADC now knows that the voltage is in the range
2.475 V to 3.3 V, so will split that range in half by setting the test voltage at the middle
(3.3 V � 2.475 V)/2 � 2.888 V. Since the input (2.5 V) is less than the output from
DAC (2.888 V), the next bit of the result register is set to 0, making the SAR 110xxxxxxx.

This process repeats until all result bits are found. The final result of this conversion is
1100000111.

7.2.3 Sampling Frequency Constraints

How often does the ADC need to sample a signal in order to accurately represent it? Sam-
pling theory states that an input signal with no frequency components greater than or equal
to one half of the sampling frequency (called the Nyquist frequency) will be completely
and accurately represented by the samples. If the input signal has any frequency compo-
nents above the Nyquist frequency, these will be aliased by the sampling and appear as
noise in the signals (as lower frequency components).

Input signals may be bandwidth-limited with a low-pass filter before sampling and
quantization. In addition, the system is typically designed so that the Nyquist frequency is
well above the filter’s corner frequency, allowing the use of less expensive, lower-order
filters.

For example, we wish to create a device to record music. The audio spectrum ranges
from 20 Hz to 20 kHz. To prevent aliasing, we need to sample at greater than 2 * 20 kHz �
40 kHz. As a practical matter, we will need to sample at a higher frequency in order to re-
duce the need for a high-order anti-aliasing filter on the input. When we play back the
recorded signal, we will also need a low-pass filter to remove the high-frequency artifacts
from sampling.

142 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

7.3 CONVERTING WITH THE RL78 ADC

We will now examine the RL78 MCU’s ADC peripheral in order to configure, select, and
scan input channels, select voltage references, set conversion speed, trigger conversions,
and read results.

7.3.1 Enabling the ADC

The ADC needs a clock signal in order to be configured and operate. This is provided by
setting the ADCEN bit in the PER0 register to 1. Clearing ADCEN to 0 removes the clock
signal and keeps the ADC in reset state, reducing power consumption.

7.3.2 Enabling I/O Pins as Analog Inputs

RD

P2

PM2

A/D converter

WRPORT

WRPM

In
te

rn
al

bu
s

P20/ANI0/AVREFP,
P21/ANI1/AVREFM,
P22/ANI2 to P27/ANI7

S
el

ec
to

r

Output latch
(P20 to P27)

PM20 to PM27

Figure 7.3 Block diagram of I/O port bit.

Figure 7.3 shows a block diagram of a typical port connected to an I/O pin (the double cir-
cle on the right). These components must be configured correctly to use the port as an ana-
log input for the ADC.

Two port characteristics must be set: first, the digital output buffer (the triangle on the
right) must be disabled; and second, analog rather than digital signals must be used.

Disabling the port’s digital output buffer is straightforward and involves setting the ap-
propriate port mode (PM) bit to 1. For example, to disable the digital output buffer for port
2 bit 0, set PM20 to 1.

Selecting the analog rather than digital signals is done in one of two different ways, de-
pending on which analog input is used.

Address: F0076H After reset: 00H R/W

Symbol

ADPC

CHAPTER 7 / CONVERTING FROM THE ANALOG TO THE DIGITAL DOMAIN 143

7.3.2.1 Analog Inputs ANI0 Through ANI14

A group of N inputs starting with ANI0 is specified; these inputs cannot be configured in-
dividually. The value (N � 1) modulo 16 must be stored in ADPC, as shown in Figure 7.4.

0 0 0 0 ADPC3 ADPC2 ADPC1 ADPC0

7 6 5 4 3 2 1 0

Figure 7.4 Using the ADPC register to enable analog inputs.

ANALOG INPUT (A)/DIGITAL I/O (D) SWITCHING

A
D

PC
3

A
D

PC
2

A
D

PC
1

A
D

PC
0

A
N

I1
4/

P1
56

A
N

I1
3/

P1
55

A
N

I1
2/

P1
54

A
N

I1
1/

P1
53

A
N

I1
0/

P1
52

A
N

I9
/P

15
1

A
N

I8
/P

15
0

A
N

I7
/P

27

A
N

I6
/P

26

A
N

I5
/P

25

A
N

I4
/P

24

A
N

I3
/P

23

A
N

I2
/P

22

A
N

I1
/P

21

A
N

I0
/P

20

0 0 0 0 A A A A A A A A A A A A A A A

0 0 0 1 D D D D D D D D D D D D D D D

0 0 1 0 D D D D D D D D D D D D D D A

0 0 1 1 D D D D D D D D D D D D D A A

0 1 0 0 D D D D D D D D D D D D A A A

0 1 0 1 D D D D D D D D D D D A A A A

0 1 1 0 D D D D D D D D D D A A A A A

0 1 1 1 D D D D D D D D D A A A A A A

1 0 0 0 D D D D D D D D A A A A A A A

1 0 0 1 D D D D D D D A A A A A A A A

1 0 1 0 D D D D D D A A A A A A A A A

1 0 1 1 D D D D D A A A A A A A A A A

1 1 0 0 D D D D A A A A A A A A A A A

1 1 0 1 D D D A A A A A A A A A A A A

1 1 1 0 D D A A A A A A A A A A A A A

1 1 1 1 D A A A A A A A A A A A A A A

Other than above Setting prohibited

144 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

7.3.2.2 Analog Inputs ANI16 Through ANI19

These inputs can be configured individually. The PMC register controls whether the pin is
used as an analog input or digital I/O. The bit for the signal of interest must be set to 1 to
enable its use as an analog input. For example, signal ANI19 is located on port 12 bit 0, so
bit PMC120 must be set.

7.3.3 Selecting Input Channels

S
el

ec
to

r

ANI0/AVREFP/P20
ANI1/AVREFM/P21

ANI2/P22
ANI3/P23
ANI4/P24
ANI5/P25
ANI6/P26
ANI7/P27

ANI16/P03/SI10/RxD1/SDA10
ANI17/P02/SO10/TxD1

ANI18/P147
ANI19/P120

A
na

lo
g/

di
gi

ta
ls

w
itc

he
r

Temperature sensor 0

Internal reference voltage (1.44 V)

S
el

ec
to

r

S
el

ec
to

r

Figure 7.5 ADC input multiplexer.

An analog input multiplexer allows the ADC to convert different input channels with-
out the need for rewiring the circuit or switching the signal externally. As shown in
Figure 7.5, there are multiple analog voltage inputs (ANI0 through ANI7, ANI16
through ANI19) as well as internal signals such as a temperature sensor and an internal
reference voltage (1.44 V).

The ADC can use the multiplexer in Select mode or Scan mode, determined by bit
ADMD.

CHAPTER 7 / CONVERTING FROM THE ANALOG TO THE DIGITAL DOMAIN 145

7.3.3.1 Selecting a Single Input Channel

In Select mode (ADMD � 0), a single channel is converted by the ADC. The analog input
channel specification register (ADS) determines which input channel is to be converted, as
shown in Figure 7.6. The ADISS bit selects whether an internal (1) or an external channel
is selected. Bits ADS4 through ADS0 select the specific signal.

� Select mode (ADMD � 0)

ADISS ADS4 ADS3 ADS2 ADS1 ADS0
ANALOG INPUT

CHANNEL INPUT SOURCE

0 0 0 0 0 0 ANI0 P20/ANI0/AVREFP pin

0 0 0 0 0 1 ANI1 P21/ANI1/AVREFM pin

0 0 0 0 1 0 ANI2 P22/ANI2 pin

0 0 0 0 1 1 ANI3 P23/ANI3 pin

0 0 0 1 0 0 ANI4 P24/ANI4 pin

0 0 0 1 0 1 ANI5 P25/ANI5 pin

0 0 0 1 1 0 ANI6 P26/ANI6 pin

0 0 0 1 1 1 ANI7 P27/ANI7 pin

0 1 0 0 0 0 ANI16 P03/ANI16 pin

0 1 0 0 0 1 ANI17 P02/ANI17 pin

0 1 0 0 1 0 ANI18 P147/ANI18 pin

0 1 0 0 1 1 ANI19 P120/ANI19 pin

1 0 0 0 0 0 — Temperature sensor 0 output

1 0 0 0 0 1 — Internal reference voltage
output (1.44 V)

Other than the above Setting prohibited

Address: FFF31H After reset: 00H R/W

Symbol

ADS ADISS 0 0 ADS4 ADS3 ADS2 ADS1 ADS0

7 6 5 4 3 2 1 0

Figure 7.6 Identifying a single analog input channel in select mode.

146 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

7.3.3.2 Scanning Multiple Input Channels

In Scan mode (ADMD � 1), four sequential channels are converted by the ADC in order.
The starting channel is defined by the ADS register, as shown in Figure 7.7. Possible start-
ing channels are ANI0, ANI1, ANI2, ANI3, and ANI4.

Figure 7.7 Identifying multiple analog input channels in scan mode.

� Scan mode (ADMD � 1)

ADS4 ADS3 ADS2 ADS1 ADS0

ANALOG INPUT CHANNEL

SCAN 0 SCAN 1 SCAN 2 SCAN 3

0 0 0 0 0 ANI0 ANI1 ANI2 ANI3

0 0 0 0 1 ANI1 ANI2 ANI3 ANI4

0 0 0 1 0 ANI2 ANI3 ANI4 ANI5

0 0 0 1 1 ANI3 ANI4 ANI5 ANI6

0 0 1 0 0 ANI4 ANI5 ANI6 ANI7

Other than the above Setting prohibited

7.3.4 Setting the Reference Voltages

The RL78 ADC allows software to select among multiple possible reference voltages, increas-
ing the resolution of readings. The reference voltage selection circuits are shown in Figure 7.8.

V�ref can be connected to three possible signals, based on the ADREFP1 and
ADREFP0 bits in ADM2.

� 00: connect V�ref to VDD (the positive power supply voltage).
� 01: connect V�ref to pin P20/AVREFP/ANI0.
� 10: connect V�ref to the 1.44 V internal reference.

V�ref can be connected to one of two possible signals, based on the ADREFM bit in ADM2.

� 0: connect V�ref to VSS (ground).
� 1: connect V�ref to P21/AVREFM/ANI1.

This enables the designer to create systems with very small quantization levels, potentially
enabling systems which do not need input amplification or level shifting.

CHAPTER 7 / CONVERTING FROM THE ANALOG TO THE DIGITAL DOMAIN 147

7.3.5 Conversion Modes

The ADSCM bit controls whether the ADC will repeatedly perform conversions (sequen-
tial conversion mode, ADSCM � 0) or only perform a single conversion (one-shot conver-
sion mode, ADSCM � 1).

The ADC in the RL78 MCU can perform a 10-bit or 8-bit conversion, based on the
ADTYP bit in the ADM1 control register (1 or 0, respectively).

7.3.6 Setting Converter Speed

We can control the speed of the ADC conversion by selecting the ADC conversion clock
frequency (fAD) which is divided down from fCLK. As shown in Figure 7.9, the bits FR2,
FR1, and F0 in the ADM0 register select the division ratio from possible values of 2, 4, 5,
6, 8, 16, 32, and 64. A conversion takes at least 17 fAD cycles and possibly more if a wait
mode or a lower operating voltage is used.

ADREFP1 and ADREFP0 bits

VDD

Internal reference voltage (1.44 V)

AVREFP/ANI0/P20

AVREFM/ANI1/P21

VSS

ADCS bit

ADREFM bit

Comparison
voltage

generator

S
el

ec
to

r

S
el

ec
to

r

Figure 7.8 Reference voltage sources.

148 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

Figure 7.9 Example of A/D conversion time selection.

(2) 2.7 V � VDD � 3.6 V
When there is no stabilization wait time (software trigger mode/hardware trigger no-wait mode)

A/D CONVERTER
MODE REGISTER

0 (ADM0)

MODE

CONVERSION TIME SELECTION
CONVER-

SION
CLOCK
(fAD)FR2 FR1 FR0 LV1 LV0

fCLK �

2 MHz
fCLK �

4 MHz
fCLK �

8 MHz
fCLK �

16 MHz
fCLK �

32 MHz

0 0 0 0 0 Normal 1 Setting
prohibited

Setting
prohibited

Setting
prohibited

Setting
prohibited

38 �s fCLK/64

0 0 1 38 �s 19 �s fCLK/32

0 1 0 38 �s 19 �s 9.5 �s fCLK/16

0 1 1 38 �s 19 �s 9.5 �s 4.75 �s fCLK/8

1 0 0 28.5 �s 14.25 �s 7.125 �s 3.5625 �s fCLK/6

1 0 1 33.75 �s 11.875 �s 5.938 �s 2.9688 �s fCLK/5

1 1 0 38 �s 19 �s 9.5 �s 4.75 �s Setting
prohibited

fCLK/4

1 1 1 19 �s 9.5 �s 4.75 �s Setting
prohibited

fCLK/2

7.3.7 Triggering a Conversion

The ADC comparator must be enabled by setting the ADCE bit to 1, placing the ADC into
conversion standby mode. The ADC must spend at least 1 �s in this state for the compara-
tor to stabilize, at which point it is ready to be triggered.

The RL78 ADC peripheral provides three methods to start a conversion, determined by
the ADTMD1 and ADTMD0 bits in the ADM1 register.

� In software trigger mode (00 or 01), the user program must set the start conversion
bit (ADCS) to one.

� In no-wait hardware trigger mode (10), a hardware trigger starts the conversion.
� In hardware trigger with wait mode (11), the system remains in a low-power mode

until a hardware trigger occurs. This wakes the system, waits for voltages to stabi-
lize, and then starts the conversion.

CHAPTER 7 / CONVERTING FROM THE ANALOG TO THE DIGITAL DOMAIN 149

The ADTRS1 and ADTRS0 bits select the hardware trigger:

� 01: When timer channel 1 reaches the end of its count, or its capture interrupt is
triggered.

� 10: When the real-time clock generates an interrupt (INTRTC).
� 11: When the interval timer generates an interrupt (INTIT).

7.3.8 Conversion Speed

ADCS W 1 or ADS rewrite

Conversion time

A/D converter
operation

Sampling time

SamplingSAR clear A/D conversion

SAR

ADCR

INTAD

Undefined
Conversion
result

Conversion
result

Figure 7.10 A/D sampling and conversion activities.

After triggering, the ADC performs a series of actions in order to perform a complete con-
version, as shown in Figure 7.10. The actions are triggered by software setting the ADCS
bit to 1, or by a hardware trigger activity.

� The SAR is cleared to all zeroes.
� The analog input is sampled.

150 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

� Successive approximation determines the binary code representing the input voltage.
� The SAR contents are copied to the result register (ADCR).
� An interrupt (ADINT) may be generated.

7.3.9 INTAD Interrupt and Range Checking

INTAD is generated
when ADCRK 5 0.

INTAD is generated
when ADCRK 5 1.

INTAD is generated
when ADCRK 5 1.

ADCR register value
(A/D conversion result)

1111111111

0000000000

<3>
(ADUL , ADCR)

<1>
(ADLL # ADCR # ADUL)

<2>
(ADCR , ADLL)

ADUL register setting

ADLL register setting

Figure 7.11 AD converter interrupt and range checking.

The AD converter can generate an INTAD interrupt when a conversion completes if the in-
terrupt mask bit is zero. In addition, the RL78 AD converter offers range-checking hard-
ware to inhibit the interrupt request if the conversion result does not match certain range
criteria, as shown in Figure 7.11.

This feature can be helpful to prevent unneeded interrupts in order to save energy and
time. For example, we can keep a device in sleep mode yet still monitor an input signal
(e.g., temperature). We do this by configuring the interrupt to monitor the temperature and
only generate an interrupt if the temperature is outside the range. Then we start the con-
verter and put the processor to sleep. If the temperature exceeds the range we’ve defined,
then the AD converter will generate an interrupt and wake up the rest of the processor to al-
low handling that condition.

The range checking hardware works as follows.

� We use the ADUL and ADLL registers to define the upper and lower limits of a
range of interest.

� We use the ADCRK bit to define whether an interrupt should be generated when
the conversion result is within the range of ADUL and ADLL (ADCRK � 0,
region 1 in Figure 7.11) or beyond the range (ADCRK � 1, regions 2 and 3).

CHAPTER 7 / CONVERTING FROM THE ANALOG TO THE DIGITAL DOMAIN 151

7.3.10 Reading Conversion Results

The AD converter loads ADCR register with the results of the conversion from the SAR
upon completion. The ADCR register is 16 bits long, so the result is left-justified. For a ten
bit conversion, bits 0 through 5 are read as zeroes, so your code may need to shift the result
right by 6 bits. For an eight bit conversion, the upper eight bits of the ADCR register can be
read as ADCRH and no shifting is needed.

7.4 EXAMPLES

We now examine how to use the RL78 AD converter in a series of examples.

7.4.1 Basic Voltage Monitor

Battery Load
Boost

Converter

lin lout

Vin: 1.7 2 2.7 V Vout: 5.0 V

Figure 7.12 System block diagram.

We would like to use the ADC to determine how much longer our battery-operated device
can operate before the battery dies. This system, shown in Figure 7.12, uses a battery con-
sisting of two NiMH AA cells in series with a resulting voltage ranging from 1.7 V to 2.7 V.
This voltage is supplied as Vin to a boost switch-mode power supply to drive the VDD sup-
ply rail (marked Vout) at a regulated 5.0 V. The MCU and all other devices in the system (la-
beled as “load”) run at 5.0 V.

We can write code to directly manipulate the control registers. The resulting program
is shown below.

#define V_REF (5.0)

void main(void)
{
unsigned result;
volatile float voltage;

152 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

// Enable the ADC:
ADCEN = 1;
// Disable the ADC interrupt
ADMK = 1;
// Input channel: We will use ANI2, which is on P2 bit 2.
ADPC = 5;
PM2_bit.no2 = 1;
ADS = 2;
// Channel select mode: Select one channel for conversion.
ADMD = 0;
// Reference voltages: Use supply voltage VDD as the pos.
// reference and ground as the negative reference.
ADREFP1 = 0;
ADREFP0 = 0;
ADREFM = 0;
// Single conversion: Perform only one conversion.
ADSCM = 1;
// Resolution: Use a 10 bit conversion.
ADTYP = 0;
// Conversion Speed: Fastest possible for 32 MHz fCLK.
FR2 = 1;
FR1 = 0;
FR0 = 1;
LV1 = 0;
LV0 = 0;
// Conversion Trigger: Select a software trigger.
ATDMD1 = 0;
ATDMD0 = 0;
// Finally we enable the ADC comparator.
ADCE = 1;

// Infinite loop for main operation
while (1) {
// Start the conversion.
ADCS = 1;
while (ADCS)
;

// Read the conversion result and convert to voltage
result = ADCR;
result >>= 6;

CHAPTER 7 / CONVERTING FROM THE ANALOG TO THE DIGITAL DOMAIN 153

voltage = result*V_REF;
voltage /= 1024;

}
}

7.4.2 Basic Voltage Monitor with Applilet

We can use Applilet to generate the code for our voltage monitor if we prefer. First, we
need to make sure that port 2 bit 2 is not used as a digital I/O port, as we need to use it for
analog input ANI2 instead, as shown in Figure 7.13.

Figure 7.13 Port 2 bit 2 must not be used for digital I/O to leave the pin free for ANI2.

As shown in Figure 7.14, we select the sameA/D converter options as described in example 1a.
We also disable the A/D interrupt, as shown in Figure 7.15.
Now we select “Generate Code” and can examine the driver code generated for the

A/D converter.

154 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

Figure 7.14 A/D Converter configuration options.

CHAPTER 7 / CONVERTING FROM THE ANALOG TO THE DIGITAL DOMAIN 155

7.4.2.1 CG_ad.h

The file CG_ad.h is created with bit definitions for control registers, macro definitions, and
function prototypes.

There are several functions created for our use in CG_ad.c:

� void AD_Init(void)—This function is called by systeminit() on startup and config-
ures the A/D converter according to the initialization settings we specified in
Applilet.

� void AD_Start(void), void AD_Stop(void)—These functions start and stop the
A/D converter by controlling the ADCS bit.

� void AD_ComparatorOn(void), void AD_ComparatorOff(void)—These functions
enable and disable the comparator using the ADCE bit.

� void AD_Read(USHORT *buffer)—This function places the result of the AD con-
version in the location pointed to by buffer.

� MD_STATUS AD_SelectADChannel(enum ADChannel channel)—This function
selects a new AD channel with the multiplexer.

7.4.2.2 CG_ad_user.c

The file CG_ad_user.c is created with space for user include files and global variables re-
lated to the A/D converter and user-defined functions such as interrupt service routines. In
this example, we disabled the AD interrupt, so no code is generated for the ISR.

7.4.2.3 CG_userdefine.h

We place the definition #define V_REF (5.0) in CG_userdefine.h.

7.4.2.4 CGain.c

Next we examine the main function in CG_main.c.

Figure 7.15 Disable A/D converter interrupt.

156 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

void main(void)
{
/* Start user code. Do not edit comment generated here */
while (1U)
{
;

}
/* End user code. Do not edit comment generated here */

}

/* Start user code for adding. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */

Now we are ready to add our code to the main function. We first need to turn on the com-
parator, and then we can get to the main loop body: starting the AD, waiting for it to finish,
reading the result, and converting it to a voltage.

void main(void)
{
/* Start user code. Do not edit comment generated here */
USHORT adc_result;
float voltage;

AD_ComparatorOn(); /* Enable ADC voltage comparator */

/* Endless control loop */
while (1U) {
AD_Start(); /* Start ADC (ADCS = 0n) */
while (ADCS)
;

// Read the conversion result and convert to voltage
AD_Read(&adc_result);
voltage = adc_result*V_REF;
voltage /= 1024;

}
/* End user code. Do not edit comment generated here */

}

Note that this code has busy waiting (while (ADCS)) to wait for the converter to complete
the conversion. This wastes processor time and reduces responsiveness.

CHAPTER 7 / CONVERTING FROM THE ANALOG TO THE DIGITAL DOMAIN 157

7.4.3 Voltage Monitor with Continuous Select Conversion

One approach to reducing busy waiting is to have the ADC perform continuous conversions so
we do not need to start and wait for the conversion to finish. In this case we would select con-
tinuous select rather than one-shot select mode. The main function will now look like this:

void main(void)
{
/* Start user code. Do not edit comment generated here */
USHORT adc_result;
float voltage;

AD_ComparatorOn(); /* Enable ADC voltage comparator */
AD_Start(); /* Start ADC (ADCS = 0n) */
while (ADCS)
;

/* Endless control loop */
while (1U) {
// Read the conversion result and convert to voltage
AD_Read(&adc_result);
voltage = adc_result*V_REF;
voltage /= 1024;

}
/* End user code. Do not edit comment generated here */

}

This approach will have the ADC dedicate all of its time to sampling one channel, and it
will not work if we wish to sample from multiple channels.

7.4.4 Power Monitor with One-Shot Scan Conversion

We realize that we can measure the power used by our system if we can measure the cur-
rent Iin drawn from the battery, shown in Figure 7.12. The power is then the voltage multi-
plied by the current. We can use a small series resistor or other device (e.g., Hall effect cur-
rent sensor) to convert the current into a voltage which the ADC can read. In fact, we can
also measure the efficiency of the power supply if we measure the power (Iout * Vout) used
by the system excluding the power supply.

We need to make our system sample both the voltage and the current in two places.
We only have one ADC, so we need to convert one channel and then the other. We will use

158 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

the scan mode (rather than select mode) as it will automatically scan through four chan-
nels sequentially for us. However, there is only one result register for the ADC, so we
need to read it before the next conversion completes. We will use the AD interrupt for this
data transfer operation, and it will place the results in four-element global array
ADC_value where they can be used by the main program. The resulting software archi-
tecture appears in Figure 7.16.

INTAD_FSM
_state

ADC_done

AD
Converter

INTAD
ISR

Main
program

ADC_value [0]

ADC_value [1]

ADC_value [2]

ADC_value [3]

Figure 7.16 Software Architecture showing execution threads and shared data.

We will assign signals to channels and variables as shown in Table 7.2.

TABLE 7.2 Assignment of Signals to Input Channels and Variables

SIGNAL INPUT CHANNEL VARIABLE

Vin ANI2 ADC_value[0]

Iin ANI3 ADC_value[1]

Vout ANI4 ADC_value[2]

Iout ANI5 ADC_value[3]

We now load Applilet to change in the port and ADC configuration. We set port 2 bits
2 through 5 to “unused.”

Now we can modify the ADC configuration as follows, shown in Figure 7.17:

� Channels ANI0 through ANI5 are analog inputs
� One-shot scan mode is used
� An AD interrupt is generated with low priority

CHAPTER 7 / CONVERTING FROM THE ANALOG TO THE DIGITAL DOMAIN 159

Figure 7.17 Configuring AD converter to scan channels ANI2 through ANI5.

ADCE is set to 1.<1>

ADCE

ADCS

ADS

A/D
conversion

status

ADCR,
ADCRH

INTAD

<2> ADCS is set to 1 while
in the conversion
standby status.

<4> ADCS is
automatically
cleared to
0 after
conversion
ends.

The trigger
is not

acknowledged.

ANI0 to ANI3

A/D convert
ends.

Power
down

Conversion
standby

Data 1
(ANI0)

Data 2
(ANI1)

Data 3
(ANI2)

Data 4
(ANI3)

Data 1
(ANI0)

Data 2
(ANI1)

Data 3
(ANI2)

Data 4
(ANI3)

The interrupt is generated four times.

Conversion
standby

<3>

Figure 7.18 AD converter operation and interrupts in one-shot scan mode.

160 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

We will change the software structure to take advantage of interrupts. We can configure the
ADC to generate an interrupt request each time a conversion completes, as shown in
Figure 7.18. The software will now consist of two separate threads of execution: one in an
ISR and one in the main function. These two threads will interact with the hardware as
shown in the sequence chart of Figure 7.19.

AD Converter

AD_Start()

ADC_done 5 1

INTAD

INTAD

INTAD

INTAD

main INTAD ISR

Figure 7.19 Sequence chart for AD converter, main function and ISR.

The ISR will set a flag ADC_done to allow the main program to determine when all con-
versions are complete. The program will follow these steps:

� The main program will initialize the INTAD state machine, clear ADC_done and
then start the converter. It will then wait for the ISR to set ADC_done, indicating
that all conversions have completed. Since ADC_done is shared between the main
program and an ISR, it must be declared as volatile.

� The state machine in the ISR servicing INTAD will copy the ADC result into the
appropriate temporary variable and advance to the next state.

� After four conversions, the ISR will signal that it is complete by setting the vari-
able ADC_done to one. Note that if we are using a task scheduler we may be able
to send a message or signal to communicate this information.

� The main program will determine that ADC_done has been set, at which point in
time it can continue execution.

CHAPTER 7 / CONVERTING FROM THE ANALOG TO THE DIGITAL DOMAIN 161

The ISR will behave according to the state machine shown in Figure 7.20. A variable
(cur_channel_idx) will keep track of how many channels have been converted.

Finally, we need to decide where to calculate the power. We have two options:

� We can calculate the power in the ISR. This will eliminate data race conditions but
increase the amount of time the processor spends in the AD ISR, increasing possi-
ble response times for other processing.

� We can calculate the power in the main program. This eliminates the response time
issue, but introduces a possible data race condition if the main program doesn’t
read a voltage or current from the temporary variable before it is updated. To deal
with this we will not start a new set of conversions until we have completed con-
verting the current set. In a system which requires faster conversions, we would
use a queue to tolerate a greater delay before using the data, and we would add an
interlock mechanism for preventing overflow.

Which option is better? It depends on other system factors.

� How long will it take to calculate power? This depends on how long it takes to
multiply the voltage and current values together. If they are multiplied as integers,
it will be relatively quick as the RL78 has an integer multiplier. If they are multi-
plied as floating point values, it will take a much longer time: the compiler will
generate code to call the math library to perform integer-to-float conversions and
then multiplication. Perhaps we can use fixed-point math to improve the perfor-
mance. We will discuss this in a future chapter.

� How important is it to minimize response time for other processing activities? If there
are other interrupts which must be serviced quickly for proper system operation, then
this is may be a deciding factor. If there are no other time-critical operations, then per-
haps making this ISR long does not have as much impact on the rest of the system.

Start/
cur_channel_idx 5 0

AD_IDLE AD_SAMPLING

[cur_channel_idx , NUM_CH]

INTAD/
ADC_result[cur_channel_idx] 5 ADCR .. 6
cur_channel_idx11

[cur_channel_idx .5 NUM_CH]/
ADC_done 5 1

Figure 7.20 State machine for INTAD interrupt service routine.

162 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

We will look at this question in more detail in subsequent chapters on optimizing respon-
siveness and program speed. For this program we will compute power in the main program
with floating-point calculations.

Our resulting program requires certain extensions to the Applilet-generated code.

7.4.4.1 CG_userdefine.h

In CG_userdefine.h we will define constants:

/*

** User define

*/

/* Start user code for function. Do not edit comment generated here
*/
#define V_REF (5.0)

#define NUM_CHANNELS (4)
#define VIN_IDX (0)
#define IIN_IDX (1)
#define VOUT_IDX (2)
#define IOUT_IDX (3)

#define AD_SAMPLING (1)
#define AD_IDLE (0)

#define K_CONVERSION (0.123)
/* End user code. Do not edit comment generated here */

7.4.4.2 CG_main.c

We define global variables in CG_main.c to share data (voltage and current (or power), and
conversion status) between the ISR and the main code.

/* Start user code for global. Do not edit comment generated here */
volatile UCHAR ADC_done = 0; /* Flag: conversion complete */
volatile USHORT ADC_value[NUM_CHANNELS];
volatile UCHAR INTAD_FSM_state = AD_IDLE;
/* End user code. Do not edit comment generated here */

CHAPTER 7 / CONVERTING FROM THE ANALOG TO THE DIGITAL DOMAIN 163

The main function is updated as follows:

void main(void)
{
/* Start user code. Do not edit comment generated here */
float P_in, P_out, effic;

/* Peripheral start function calls */
AD_ComparatorOn(); /* Enable ADC voltage comparator */

/* Endless control loop */
while (1U)
{
INTAD_FSM_state = AD_SAMPLING;
ADC_done = 0;
AD_Start(); /* Start ADC (ADCS = 0n) */
while (!ADC_done)
;

// Read the conversion results and calculate power
P_in = K_CONVERSION*ADC_value[VIN_IDX]*ADC_value[IIN_IDX];
P_out = K_CONVERSION*ADC_value[VOUT_IDX]
*ADC_value[IOUT_IDX];

effic = (P_in - P_out)/P_in;
}

/* End user code. Do not edit comment generated here */
}

7.4.4.3 CG_ad_user.c

We create references in CG_ad_user.c for the external variables which the INTAD ISR uses:

/*

** Global define

*/
/* Start user code for global. Do not edit comment generated here */
extern volatile USHORT ADC_value[NUM_CHANNELS];
extern volatile UCHAR ADC_done;
extern volatile UCHAR INTAD_FSM_state;
/* End user code. Do not edit comment generated here */

164 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

Applilet has generated the skeleton ISR for INTAD (MD_INTAD) in CG_ad_user.c. We
complete it with the state machine:

/*
** —
**
** Abstract:
** This function is INTAD interrupt service routine.
**
** — */
#pragma vector = INTAD_vect
__interrupt void MD_INTAD(void)
{
/* Start user code. Do not edit comment generated here */
static UCHAR cur_channel_idx = 0;

switch (INTAD_FSM_state) {
case AD_SAMPLING:
AD_Read(&(ADC_value[cur_channel_idx]));
cur_channel_idx++;
if (cur_channel_idx == NUM_CHANNELS) {
INTAD_FSM_state = AD_IDLE;
cur_channel_idx = 0;
ADC_done = 1;

}
break;

case AD_IDLE:
default:
INTAD_FSM_state = AD_IDLE;
break;

}
/* End user code. Do not edit comment generated here */

}

7.4.5 Forward Reference: Energy Monitor

Monitoring power is good, but we might also like to monitor energy, which is power inte-
grated over time. To do this we need accurate timing information. How can we use a timer
to generate a periodic interrupt to trigger the ADC scan conversion? And how fast can we
make the code run (can we use fixed point math)? A faster conversion rate will increase the

CHAPTER 7 / CONVERTING FROM THE ANALOG TO THE DIGITAL DOMAIN 165

accuracy of the measurement. We will revisit this example when discussing timers and
code optimization.

7.5 RECAP

This chapter has presented the basic concepts behind analog to digital conversion and the
specifics of the RL78 family’s AD converter. We have seen how the details of how to use
software to control and use the AD converter. We have also seen how to improve the soft-
ware architecture to leverage the AD interrupt capability.

7.6 EXERCISES

1. What is the output code (in decimal) of a 10-bit ADC with Vin � 1.47 V? Assume
that V�ref � 5 V and V�ref � 1.0 V.

2. What is the output code (in decimal) of an 8-bit ADC with Vin � 2.7 V? V�ref �
3.3 V and V�ref � 0 V?

3. Given the following information of a particular analog to digital converter,
determine the value of the digitally represented voltage and the step size of the
converter:
a. The device is 10-bit ADC with V�ref � 3.3 V and V�ref � 0 volts.
b. The digital representation is: 0110100010.

4. What is the maximum quantization error for a 10-bit ADC with V�ref � 3.3 V, and
V�ref � 0 V?

5. What is the maximum quantization error for an 8-bit ADC with V�ref � 2.5 V, and
V�ref � 0.7 V?

6. Write a simple subroutine to configure the AD converter as follows: select analog
input channel ANI7, sequential conversion mode, ADREFP � internal 1.44 V ref-
erence, ADREFM � ANI1, conversion time as close to 10 �s as possible, software
trigger, no interrupt.

7. Write a program to display the percentage of light intensity given a light sensor
circuit. Record the values for ‘darkness’ (cover the sensor to make it dark) and
‘brightness’ (shine a bright LED or other light on the sensor). Identify the correct
calibration such that the average room light lies between these values.

8. Modify the program from the Basic Voltage Monitor example to support a system
without any voltage regulation. Assume that the battery voltage ranges from
2.6 V to 1.7 V. Hint: Use the internal voltage reference and a resistive voltage
divider.

167

8.1 LEARNING OBJECTIVES

In embedded systems applications, communication between the microcontroller and other
outer peripherals is often required. Although some of the communicated signals are analog,
others are digital. In this chapter we outline and explain the idea of digital communication
between a microcontroller and various peripherals. We explore several different protocols
in place and learn how they are used. We will see the advantages and disadvantages of us-
ing different types of serial communications and explore various applications of different
protocols with different devices.

8.2 BASIC CONCEPTS

Let’s consider an embedded system with an MCU and several external peripherals ICs or
modules with digital information (e.g., byte-size data). The MCU needs to communicate
with each device in order to operate.

Here we focus on how to move data between digital logic components. We do not ad-
dress what the data means. Peripheral devices have their own protocols for how to com-
municate with them. For example, many peripherals require the master to first send a con-
trol byte of data indicating whether it intends to either read from a register or write to a
register or perform some other function. In some cases, an initial control byte may indicate
that several registers will be written or read sequentially on the peripheral device.

8.2.1 Connections

How can the devices be connected? One obvious approach, shown in Figure 8.1, is to use
a dedicated point-to-point connection between the MCU and each device. We will need a
separate connection for each device. We make each connection parallel—we use a discrete

Serial Communications

Chapter EightChapter Eight

168 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

signal for each data bit in the byte. We also provide control lines such as read and write to
each device to indicate what it should do. This may be fast but it requires many signals,
raising IC package sizes (due to pin counts) and PCB sizes (due to the number of traces).

P
eripheral

D
a

ta
R

d
W

r

MCU

P
er

ip
he

ra
l

D
a

ta
R

d
W

r

Peripheral

DataRdWr

Peripheral

Data Rd Wr

Figure 8.1 Digital communications using dedicated point-to-point connections.

Select

Peripheral
Wr Rd Data

Select

Peripheral
Wr Rd Data

Select

Peripheral
Wr Rd Data

Select

Peripheral
Wr Rd Data

MCU

Figure 8.2 Digital communications using shared data and control buses and individual select lines.

Figure 8.2 shows some improvements. One simplification is to allow all devices to share
the same set of data lines, forming a data bus. In this case we have a parallel bus which
uses a signal for each of the eight data bits. Another simplification is to reduce the number
of control signals. We can create a control signal bus which specifies read or write opera-
tions and connect it to all of the devices. We need to change each device slightly so that it
only responds to the control signals if it has been selected with its device select signal.

CHAPTER 8 / SERIAL COMMUNICATIONS 169

If we have many devices, or we wish to address many locations within each device, we
may wish to encode N select signals into an address bus which is ceiling (log2N) bits
wide. This is the approach used for external memory ICs.

8.2.2 Synchronous Serial Communication

Another major simplification is to replace the parallel data bus with a serial data bus, as
shown in Figure 8.3. In this case we will need to convert data from parallel form to serial at
the transmitter, and from serial to parallel at the receiver.

Select

Peripheral
Clk Din DOut

Select

Peripheral
Clk Din DOut

Select

Peripheral
Clk Din DOut

Select

Peripheral
Clk Din DOut

MCU

Figure 8.3 Digital communications using a clock and two shared buses: Serial data in and serial
data out.

D3

D Q

D2

D Q

D1

D Q

D0

D Q
Serial
Data Out

Clk

Parallel Data In

Figure 8.4 Parallel-to-serial shift register.

This is performed with shift registers as shown in Figure 8.4 and Figure 8.5. The parallel-
in-serial-out shift register is first loaded with input data by using the multiplexers to select
the parallel input data and clocking that data into the D flip-flops. The multiplexer control
lines are then flipped so that the input data for each flip-flop is the output from the flip-flop
to the left. Each subsequent clock pulse will cause the data to shift one bit to the right. The
figures show four-bit shift registers, but in practice the shift register is large enough to hold
an entire data word and potentially additional information.

170 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

Each peripheral and MCU has internal shift registers to perform the conversion back and
forth between parallel and serial formats. Figure 8.6 shows an example of a master device,
which creates the clock signal. This is the approach used for CSI and SPI communications.

Notice that we have separate signal lines for transmit and receive data (data out and
data in). This is called full duplex mode1 and allows for simultaneous transmission and re-

D3

D Q

D2

D Q

D1

D Q

D0

D
Serial

Data In

Clk

Parallel Data Out

Q

Figure 8.5 Serial-to-parallel shift register.

D3

D Q

D2

D Q

D1

D Q

D0

D

D Q D Q D Q D Q

Clk

Transmit Data Register

Serial
Data Out

Clock
Out
Serial
Data In

Receive Data Register

Q

Figure 8.6 Example of internal shift registers in master device.

1 Full duplex mode—communication is allowed in two directions at the same time.

CHAPTER 8 / SERIAL COMMUNICATIONS 171

ception by any given device. If the receive and transmit information are sent on the same
signal line then only half duplex mode2 communications are possible.

2 Half duplex mode—communication is allowed in only one direction at a time.

MCU

Peripheral
Clk Data

Peripheral
Clk Data

Peripheral
Clk Data

Peripheral
Clk Data

Figure 8.7 Digital communications using a clock and one shared signal: Serial data.

In Figure 8.7 we further reduce the number of signals needed for communication. First, we
use only one signal line for data, allowing only half-duplex communication. Second, we
send the address or device select information on the same bus as the data. Our data com-
munication now uses a packet with both data and addressing information. Protocols such
as I2C use this approach because of the low pin count requirement.

8.2.3 Asynchronous Serial Communication

MCU

Peripheral
Clk Data

Peripheral
Clk Data

Peripheral
Clk Data

Peripheral
Clk Data

Figure 8.8 Digital communications using a shared serial data line without explicit clocking.

One further simplification is possible, as shown in Figure 8.8. We can eliminate the explicit
clock line and rely on each peripheral to perform asynchronous communication. This is
the communication approach which a UART and embedded protocols such as CAN use.

Asynchronous means that there is no clock signal transmitted along with the data to
indicate when to sample it. Instead, the receiver has a clock running at the same frequency
to determine how frequently to sample the signal line to capture each data bit, indicated
by the triangles in the figure. The timing reference of when to start sampling is provided
by a start bit as shown in Figure 8.9.

172 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

Start
bit

Bit 0 Bit 1 Bit 7 Parity
bit

ø

ø

Latch
timing

Stop
bit

Figure 8.9 Example of asynchronous clocked serial communications timing references.

Figure 8.10 shows an example of data being transmitted with a UART, a 0-start-bit and a
1-stop-bit. Depending on whether the LSB or MSB is sent first, this can be interpreted as
0x96 or 0x69.

The transmitter of a UART is quite simple. It simply needs to clock the data bits (and a
few extras, like the start and stop bits and perhaps a parity bit) out of the transmit shift reg-
ister every Tbit seconds.

The receiver of a UART is more complicated. It monitors the receive data line for the
leading edge of the start bit. When it detects that edge, it starts its internal clock source
which will generate signals to shift data into the receive data shift register at the middle of
each bit time. To be specific, sampling the receive data line at 0.5* Tbit provides the start
bit, the sample at 1.5* Tbit provides the first data bit, the sample at 2.5* Tbit provides the
second data bit, and so forth, on up to the final bit (a stop bit). There is hardware which ver-
ifies frame has been received correctly: the start bit must be valid (e.g., 0), the stop bit must
be valid (e.g., 1), and if parity is used it must be correct.

8.2.3.1 Error Prevention and Detection

There are two approaches used to improve the reliability of serial communications. The
first is to make the transmitted signals more electrically robust, while the second is to send
additional information to verify data integrity.

� The RS-232 standard represents ones and zeros with large voltages such as �10 V
and �10 V, as shown in Figure 8.11. RS-232 drivers have low output impedances,
allowing them to drive long, capacitive cables at high speeds.

ST 1 0 0 1 0 1 1 0 SP

Figure 8.10 Waveform of byte 0x69 transmitted asynchronously.

CHAPTER 8 / SERIAL COMMUNICATIONS 173

� Differential communications add another signal line with the opposite value of the
signal. The receiver merely needs to determine which signal line has a larger volt-
age to determine whether a one or a zero was transmitted. This makes the resulting
communication system immune to common-mode noise, in which the same noise
voltage is induced in both signal wires.

Data integrity checks allow the receiver to verify that the received data is correct and has
not been corrupted.

� A parity bit may be sent with a byte of data in order to count the number of one-
bits in the byte. The parity bit is set to a value such that the total number of one bits
(in parity plus data) is either even or odd. In even parity, if the number of one-bits
is even, this bit is zero, and one if it is odd. In odd parity, the bit is zero if there is
an odd number of one-bits, and one otherwise. Adding parity is a simple way to
perform error detection, because if a single bit is corrupted in transmission, then
the UART hardware will be able to detect that the parity of the received byte is in-
correct, and generate an interrupt indicating an error. Note that parity will not de-
tect if an even number of bits are corrupted.

� A parity bit is in fact a simple case of cyclic redundancy check code. A CRC ap-
pends multiple bits rather than just one and is typically able to detect multiple cor-
rupted bits, making it a much more robust integrity-checking code. The CRC is
calculated by performing a series of exclusive or operations and shifts on the data.
Communication protocols such as CAN, USB, Ethernet, and Bluetooth use CRCs,
as do storage devices such as Secure Digital cards.

10V

5V

0V

25V

210V

Figure 8.11 Waveform of byte transmitted asynchronously using RS-232 voltage levels.

174 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

8.2.4 Example Protocols

We now examine three separate protocols which are supported by the RL78 serial array
unit peripheral.

8.2.4.1 CSI

One form of serial communications is the Clocked Serial Interface (CSI). CSI communica-
tions operate in full duplex mode, using one wire for transmission and one wire for recep-
tion. A third wire in CSI communications provides the clock for communication. CSI is
therefore synchronous.

SCKp

SOp

Slp input timing

D7 D6 D5 D4 D3 D2 D1 D0

Figure 8.12 Example of clocked (synchronous) serial communications timing references.

Figure 8.12 is a timing diagram which shows the relationship between the clock signal
(SCKp) and the output (SOp) and input (SIp) signals. In this example, a new output data bit
is shifted out with the rising edge of the clock. The device receiving this data (the slave)
uses the falling edge of the clock to shift SOp into its receiving shift register. In order for
the slave to send data to the master, the slave uses the clock signal’s rising edge to shift data
out of its transmit shift register.

SCK

SO

Sl

Figure 8.13 Example of data transmission with CSI.

Figure 8.13 shows an example of data transmission and reception. In this example, the ris-
ing edge of SCK clocks out data of transmit shift registers and the falling edge clocks data
into receive shift registers. The signal on SO represents data 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0
and the signal on SI represents data 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1.

The master must provide the clock in order to enable communication. Typically, the
microcontroller is the master and a peripheral device is the slave. A slave device only
communicates when requested by the master.

CHAPTER 8 / SERIAL COMMUNICATIONS 175

Using CSI, communication (including transmission and reception) is often referred to
in both directions as transferring. This is because the clock is dictated by the master, so in
order for the slave to communicate back to the master, the master must transmit a byte of
data to activate the clock. As the master transmits to the slave, the slave simultaneously
transmits to the master, thus transferring a byte. If the master only intends to receive data
from the slave, it will still need to transmit dummy bytes solely for the purpose of activat-
ing the clock to receive the data from the slave.

CSI communication is very similar to SPI (Serial Peripheral Interface) communica-
tion, which is typically a four wire interface. SPI tends to be used to have multiple slaves
on a single channel, and uses the fourth wire as a chip select line to designate communica-
tion with a single slave at a time. If GPIO ports are available, the RL78 can share several
slaves on one bus and use several GPIO port signals to select individual chips.

8.2.4.2 UART

Another form of serial communications is the Universal Asynchronous Receiver/Transmitter,
or UART.

UARTs typically provide both a transmit line and a receive line, allowing full duplex
communication. A UART may operate in half duplex mode3 if the receive and transmit
lines share a bus.

A UART most often transmits data in 8-bit (one byte) characters at a time, but nor-
mally can be configured to do more or less. In the digital domain, a transmitter keeps its
output line high until the beginning of data communication. Once data communication be-
gins, a start bit4 is first sent, immediately followed by all eight bits of the byte, with the
least significant bit first, and then normally one stop bit5. The next byte’s start bit can be
sent immediately. Depending on the specific settings, the most significant byte may be sent
first, one or two stop bits may be used, and to verify the integrity of sent data, parity may
also be added.

Because start and stop bits, and sometimes a parity bit, must be added to the commu-
nication of data, data speeds in serial communications are normally measured in symbols
per second rather than bits per second. A symbol is any bit in communication that may rep-
resent start or stop of transmission, as well as any bit that is part of the transmitted data.

3 Half duplex mode—communication is allowed in only one direction at a time.
4 Start bit—a single bit where the data line transitions from high to low. This lets the hardware receiving the
character know a character is about to be sent.
5 Stop bit—a single bit that transitions the data line from low to high, or keeps it high if already high, in prepa-
ration for the data line to remain high while idle.

176 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

The term baud rate6 refers to symbols per second, and in order for UART communication
to successfully take place, the baud rates of both devices communicating must be equal. It
is therefore important when programming a microcontroller to know the baud rates of pe-
ripherals using UART communication so as to be able to configure the UART correctly.
Likewise, it is also important to properly configure how many data bits are sent in each
frame (7, 8, or 9), how many stop bits are used (either 1 or 2), whether or not there will be
even parity, odd parity, or no parity, etc. Having all of these aspects of UART communica-
tion pre-established allows for simple communication to occur over two wires.

8.2.4.3 I2C

A third popular form of communications is called the Inter-Integrated Circuit (I2C) proto-
col. Unlike the two former protocols, I2C operates only in half duplex mode, and uses only
two wires. For this reason, I2C is also commonly referred to as a two-wire interface. I2C is
used most frequently for local communication with peripherals within one embedded
system.

I2C is synchronous like CSI—a clock signal is sent along with a data signal. Only one
device can be a master at a time, as it will generate the clock signal. The second wire in I2C
provides data and addressing information, and is used for both reception and transmission
(since I2C provides half duplex mode operation). The I2C communication protocol is in-
tended to allow several devices to share a single bus. Among these devices, there may be one
master node and multiple slave nodes, or even multiple master nodes and multiple slave
nodes. The RL78 family of MCUs supports two forms of I2C: simplified I2C and advanced
I2C. Simplified I2C communication can be performed by configuring part of the Serial Array
Unit peripheral in IIC mode. This mode supports one master node (the RL78 microcon-
troller) and multiple slave nodes. The IICA is a separate peripheral from the SAU and it pro-
vides more complete I2C protocol support, including multi-master support..

With I2C all devices use open-drain drivers to control the SCL and SDA lines. This al-
lows any device to pull down the data line or clock line; a resistor pulls up the line to a
logic one if no node is trying to drive a zero. If multiple nodes attempt to simultaneously
drive the line, the nodes attempting to drive it low will indeed drive it low. This can be de-
tected by other nodes that simultaneously may be attempting to drive the line differently,
letting those other nodes know that the line is active.

Since the data line is shared among several nodes, a protocol exists to define how the
data line is to be used to communicate between master and slave. To illustrate the con-
cepts, we will examine communication with an EEPROM memory device with an I2C in-
terface such as the R1EX24512ASAS0A. It supports multiple possible commands: write

6 Typical baud rates include 4800 baud, 9600 baud, 57600 baud, 115200 baud, etc. where baud refers to sym-
bols per second. Most devices that allow for configuration of baud rate will only allow selection of one of these
predefined baud rates.

CHAPTER 8 / SERIAL COMMUNICATIONS 177

data to address, write data with autoincrementing address, read data from an address, read
from sequential addresses, and so forth. Other I2C devices have different communication
formats.

Each slave node on an I2C bus has a unique, seven-bit address given to it (allowing
27 � 1 or 127 possible slaves to exist on a single bus). The master includes this address in
each data transaction to identify the targeted slave device. For our EEPROM device, this
address consists of bits 10100 followed by two bits which are set by two dedicated pins on
the IC package. This allows us to create a system with up to four of these devices on the
same I2C bus while still allowing them to be addressed individually.

Note that the I2C device bus address is different from the device’s internal memory
addresses.

Master device

Clock output

(Clock input)

Data output

Data input

Slave device

VSS

SCLA0 SCLA0

VDD

VSS

Clock input

(Clock output)

VSS

SDAA0 SDAA0

VDD

VSS

Data input

Data output

Figure 8.14 IC clock and data line connections.

ACK ACK ACK ACK Stop
R/W

Start

1 0 1 0 0 W a1
5

a1
4

a1
3

a1
2

a1
1

a1
0

a9 a8 a7 a6 a5 a4 a3 a2 a1 a0 D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0512k

Device
address

1st Memory
address (n)

2nd Memory
address (n) Write data (n)

*1

Figure 8.15 Example of writing data to EEPROM with I2C interface.

178 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

Let’s examine how a byte of data is written to the EEPROM. The waveform of the data line
(SDA) is shown in Figure 8.15.

� After verifying that the data line is not in use, the master first generates a start con-
dition. This is followed by transmitting the slave node device bus address and write
bit. The slave transmits an ACK bit back to acknowledge that its own device ad-
dress matches the one transmitted by the master.

� The master sends the upper byte of the memory address (bits a15 through a8) and
the slave device (memory) signals an acknowledgement.

� The master sends the lower byte of the memory address (bits a7 through a0) and
the slave device an acknowledgement.

� The master sends the data byte to write and the slave device signals an
acknowledgement.

� The master then generates a stop condition.

ACK ACK ACK

StopR/W
Start

1 0 1 0 0 R D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

D
5

D
4

D
3

D
2

D
1

D
0

Device
address Read data (n) Read data (n11) Read data (n12)

*1

ACK No ACK

Read data (n1m)

ø
ø

Figure 8.16 Example of sequential read from EEPROM with I2C interface.

Another example appears in Figure 8.16. Here we use the sequential read mode, which
reads from the address after the previous read or write.

� After verifying that the data line is not in use, the master first generates a start con-
dition. This is followed by transmitting the slave node address and a read. The
slave transmits an ACK bit back to acknowledge that its own device address
matches the one transmitted by the master.

� The slave sends the read data byte from address n and the master device signals an
acknowledgement.

� The slave sends another read data byte (from address n�1) and the master signals
an acknowledgement.

� The slave sends another read data byte (from address n�2) and the master signals
an acknowledgement. This may repeat multiple times.

� The slave sends another read data byte (from address n�m) but the master does
not signal an acknowledgement.

� The master then generates a stop condition.

CHAPTER 8 / SERIAL COMMUNICATIONS 179

8.3 SERIAL ARRAY UNIT CONCEPTS

Figure 8.17 Serial Array Unit channel names based on operating modes.

UNIT NAME BASED ON MODE

UNIT CHANNEL CSI UART SIMPLIFIED I2C

0

0 CSI00
UART0

IIC00

1 CSI01 IIC01

2 CSI10
UART1

IIC10

3 CSI11 IIC11

1

0 CSI20
UART2

IIC20

1 CSI21 IIC21

2 CSI30
UART3

IIC30

3 CSI31 IIC31

An RL78 MCU’s Serial Array Unit, is shown in Figure 8.17. Serial Array Unit channel
names based on operating modes has multiple channels which can be configured to operate
in several modes: CSI, UART, and Simplified IIC. We begin by describing the aspects of
the SAU behavior which are common across the modes, and then we examine each mode’s
operation and any mode-specific configuration options.

8.3.1 Common SAU Concepts

An SAU channel’s operating mode is selected from CSI, UART and Simplified IIC using
the MDmn2 and MDmn1 bits. Note that in these control register descriptions, m refers to
the SAU number (0 or 1) and n refers to the channel with in the SAU.

8.3.1.1 Enabling a Channel

There are some basic configurations settings necessary.

� In order to use a SAU it must be provided with a clock signal by setting the
SAUmEN bit in PER0 to 1.

� A channel can perform transmission, reception, or both simultaneously (depend-
ing on the operating mode). In order to enable transmission, bit TXEmn must be
set to 1. In order to enable reception, bit RXEmn must be set to 1.

180 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

� Each channel has a read-only bit SEmn which enables communication when it is 1
and disables it otherwise. To set the bit, the corresponding serial channel start bit
(SSmn) must be written with a 1. To clear SEmn, the corresponding serial channel
stop bit (STmn) must be written with a 1.

8.3.1.2 Data Configuration

Transmit and receive data are sent through the lower bits of the SDRmn register. These bits
have different names based on the operating mode and the data transfer size. The p, q, and
r suffixes indicate which channel is used:

� The CSI mode refers to the lower eight bits as SIOp.
� The UART mode refers to the lower eight or nine bits as TXDq and RXDq.
� The Simplified IIC mode refers to the lower eight bits as SIOr.

Various aspects of data representation are configurable:

� Data length is set to seven, eight, or nine bits by the DLSmn bits.
� The “endianness” of data communication is controlled with bit DIRmn. Clearing it

to 0 results in the most-significant bit being sent first (big-endian data), while set-
ting it to 1 inverts the order to little-endian.

� The POMmn bit controls whether the output port signal is driven both high and
low (push-pull) or just low (open-drain). Using the open-drain configuration en-
ables us to safely connect multiple outputs to the same bus line, as shown in
Figure 8.18.

Q2

ln

Q4

ln

Q6

ln

R1

Shared Bus

Figure 8.18 Open-drain outputs can drive a bus safely.

CHAPTER 8 / SERIAL COMMUNICATIONS 181

8.3.1.3 Software Control of Output Lines

There are several bits which allow software control (bit-banging) of the output data and
clock lines when communication is stopped. These are used in I2C to support creation of
start and stop conditions.

� The SOEmn bit controls whether software can change the value of the serial output.
� The SOmn and CKOmn bits set the value serial output and clock output.

8.3.1.4 Status

The serial status register (SSRmn) holds flags indicating various status conditions:

� The BFFmn flag indicates the buffer register status. If the flag is one, then there is
valid data in the SDRmn register. BFFmn is set when the program writes to
SDRmn, and cleared when the program reads from SDRmn.

� The TSFmn flag indicates communication is in progress. It is set by hardware
when transmission begins and cleared when transmission ends.

� The OVFmn flag indicates an overrun error has occurred. Either received data was
not read from SDRmn before the next data was received, or the received data was
not read from SDRmn before the next data to transmit was written.

8.3.1.5 Transfer Speed Control

The clock signals which control transfer speed are essential for both asynchronous and syn-
chronous communications. Shown in Figure 8.19, the SAU clock generators are flexible and
enable the generation of a wide range of frequencies based on an internal or an external source.
Each SAU has two operation clock signals (CKm0 and CKm1, also called fMCK); a channel
can use either of these clocks. These operation clocks can be set to a frequency derived from
fCLK (divided by powers of two from 1 to 215). Alternatively, an external serial clock input can
be used (e.g., in synchronous reception modes). Each channel then generates a transfer rate
clock by dividing the selected clock signal down by a factor ranging from 2 to 256.

The clock speed is controlled by several registers.

� The PRSmn fields of the SPSm register control the division of fCLK to generate the
operation clocks CKm0 and CKm1.

� The CKSmn and CCSmn bits controls which prescaler output clock (CKm0 or
CKm1) or the external clock is used.

� The upper seven bits of the SDRmn register control the division ratio of the opera-
tion clock. The resulting communication frequency is fMCK/(2(D�1)), where D is
the division factor stored in the SDRmn[15:9].

182 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

8.3.1.6 Interrupts

Each channel can request several types of interrupt, based on the channel’s operating mode.

� A transmitting SAU channel can request an interrupt either when a transfer ends
(for single transfer mode) or when the transmit buffer is empty (for continuous
transfer mode). This is controlled by the MDmn0 bit.

� A receiving SAU channel can request an interrupt when reception is completed.
We will explore this in greater detail below.

� A receiving SAU channel can also request an interrupt if an error has occurred.

8.3.2 CSI Mode

8.3.2.1 Basic Concepts

There are six different types of communication possible based on whether the channel is
configured as a master or slave, and whether a transfer operation is a transmission, a re-

SAUmEN

PRSm0

SDRm0

bits 15:9 bits 8:0

SDRm1

bits 15:9 bits 8:0

Divide by 2N

Divide by
2(N+1)

External Serial
Clock Input

SCKm0

External Serial
Clock Input

SCKm1
fCLK

CKm0

CKm1

fMCKm0 fSCKm0 fMCKm1 fSCKm1

fTCLKm1fTCLKm0

f C
LK

f C
LK

/2
f C

LK
/4

f C
LK

/8
f C

LK
/1

6
f C

LK
/3

2
f C

LK
/6

4
f C

LK
/1

28
f C

LK
/2

56
f C

LK
/5

12
f C

LK
/1

02
4

f C
LK

/2
04

8
f C

LK
/4

09
6

f C
LK

/8
19

2
f C

LK
/1

63
84

f C
LK

/3
27

68 PRSm1

Divide by
2(N+1)

Figure 8.19 Clock generation system for serial communications.

CHAPTER 8 / SERIAL COMMUNICATIONS 183

ception, or both simultaneously. In addition, there is a snooze mode function which allows
the processor to save power and energy.

We will examine two communication modes, both of which involve both transmission
and reception. The first uses the CSI mode’s single transfer operation, while the second
uses continuous transfer operation. In master modes, the channel generates the transfer
clock signal.

main SAU CSI ISR

Write to SDRmn

TSFmn 5 0 INTCSI

Write to SDRmn

TSFmn 5 0 INTCSI

Write to SDRmn

TSFmn 5 0 INTCSI

Figure 8.20 Interactions between main routine, SAU in CSI mode, and CSI ISR when oper-
ating in single transfer mode.

Figure 8.20 and Figure 8.21 present an overview of CSI master communication with si-
multaneous transmit/receive operation in single transfer mode. A CSI interrupt is generated
after each transfer completes.

� The main routine writes transmit data item #1 into SDRmn.
� This write starts the transmission/reception process: the CSI controller cycles the

clock line SCKp to shift transmit data out through SOp while shifting receive data
in through SIp. During this activity the TSFmn bit is set, indicating that communi-
cation is in progress.

� When all seven or eight data bits have been transmitted and received, the INTCSIp
interrupt is requested.

184 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

R
ec

ep
tio

n
&

sh
ift

op
er

a
tio

n
R

ec
ep

tio
n

&
sh

ift
op

er
a

tio
n

R
ec

ep
tio

n
&

sh
ift

op
er

a
tio

n

Tr
an

sm
it

D
a

ta
1

Tr
an

sm
it

D
a

ta
2

Tr
an

sm
it

D
a

ta
2

Tr
an

sm
it

D
a

ta
1

Tr
an

sm
it

D
a

ta
2

Tr
an

sm
it

D
a

ta
3

R
ec

ei
ve

D
a

ta
1

R
ec

ei
ve

D
a

ta
2

R
ec

ei
ve

D
a

ta
3

R
ec

ei
ve

D
a

ta
1

R
ec

ei
ve

D
a

ta
2

R
ec

ei
ve

D
a

ta
3

W
rit

e
W

rit
e

W
rit

e

D
at

a
tra

ns
m

is
si

on
/re

ce
pt

io
n

(8
-b

it
le

ng
th

)
D

at
a

tra
ns

m
is

si
on

/re
ce

pt
io

n
(8

-b
it

le
ng

th
)

D
at

a
tra

ns
m

is
si

on
/re

ce
pt

io
n

(8
-b

it
le

ng
th

)

S
S

m
n

S
Tm

n

S
E

m
n

S
D

R
m

n

S
C

K
p

pi
n

S
lp

pi
n

S
hi

ft
re

gi
st

er
m

n
S

O
p

pi
n

IN
TC

S
Ip

T
S

F
m

n

R
ea

d
R

ea
d

R
ea

d

Fi
g

u
re

8.
21

Ti
m

in
g

di
ag

ra
m

sh
ow

in
g

C
SI

m
as

te
r

pe
rf

or
m

in
g

si
m

ul
ta

ne
ou

s
tr

an
sm

is
si

on
an

d
re

ce
pt

io
n

in
si

ng
le

tr
an

sm
is

-
si

on
m

od
e.

CHAPTER 8 / SERIAL COMMUNICATIONS 185

� The CSI ISR reads the received data item from SDRmn and stores in in a user-
defined receive data buffer.

� The user program can repeat this process with each data item until all of the data
has been sent and received.

main SAU CSI ISR

Write to SDRmn
INTCSI

INTCSI

INTCSI

Write to SDRmn

Write to SDRmn

Write to SDRmn

Figure 8.22 Interactions between main routine, SAU in CSI mode, and CSI ISR when oper-
ating in continuous transfer mode.

Figure 8.23 shows operation with continuous transfer mode. A sequence diagram ap-
pears in Figure 8.22.

The main difference from single transfer mode is that most of the data transfer process-
ing occurs in the ISR rather than the main routine. The CSI interrupt is generated when data
is copied from the SDRmn register to the shift register. Also, the SAU automatically copies
data from SDRmn to the shift register when the current transmission completes. This mech-
anism allows us to implement a continuous operation within the ISR. We also have another
interrupt to deal with at the beginning of the sequence, which changes the ISR slightly.

� The main routine writes data item #1 into the SDRmn.
� Unlike the single transfer mode, an INTCSIp interrupt is requested soon after the

first data item is written into SDRmn. Because the SAU is idle (not currently trans-
mitting), it automatically transfers the data from SDRmn into the transmit shift
register. This transfer generates an interrupt.

� As above, the ISR needs to read received data from SDRmn. However, it has addi-
tional features:
▫ The ISR also needs to write transmit data to SDRmn.
▫ The ISR does not need to read the received data for the first interrupt.
▫ After loading the last data to transmit the ISR needs to disable further transfers

by switching the interrupt source to end of transmission instead of buffer
empty (by clearing MDmn0 to 0).

186 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

Tr
an

sm
it

D
a

ta
1

Tr
an

sm
it

D
a

ta
2

R
ec

ei
ve

D
a

ta
3

W
rit

e

S
S

m
n

S
Tm

n

S
E

m
n

S
D

R
m

n

S
C

K
p

pi
n

S
lp

pi
n

S
hi

ft
re

gi
st

er
m

n
S

O
p

pi
n

IN
TC

S
Ip

T
S

F
m

n

R
ec

ei
ve

r
D

a
ta

1
Tr

an
sm

it
D

a
ta

3
R

ec
ei

ve
r

D
a

ta
2

W
rit

e
W

rit
e

R
ea

d
R

ea
d

R
ea

d

D
at

a
tra

ns
m

is
si

on
/re

ce
pt

io
n

(8
-b

it
le

ng
th

)
D

at
a

tra
ns

m
is

si
on

/re
ce

pt
io

n
(8

-b
it

le
ng

th
)

D
at

a
tra

ns
m

is
si

on
/re

ce
pt

io
n

(8
-b

it
le

ng
th

)

M
D

m
n0

B
F

F
m

n

R
ec

ei
ve

D
a

ta
3

R
ec

ei
ve

D
a

ta
2

R
ec

ei
ve

D
a

ta
1

Tr
an

sm
it

D
a

ta
1

Tr
an

sm
it

D
a

ta
2

Tr
an

sm
it

D
a

ta
3

R
ec

ep
tio

n
&

sh
ift

op
er

a
tio

n
R

ec
ep

tio
n

&
sh

ift
op

er
a

tio
n

R
ec

ep
tio

n
&

sh
ift

op
er

a
tio

n

Fi
g

u
re

8.
23

Ti
m

in
g

di
ag

ra
m

sh
ow

in
g

C
SI

m
as

te
r

pe
rf

or
m

in
g

si
m

ul
ta

ne
ou

s
tr

an
sm

is
si

on
an

d
re

ce
pt

io
n

in
co

nt
in

uo
us

tr
an

s-
fe

r
m

od
e.

CHAPTER 8 / SERIAL COMMUNICATIONS 187

� The transmission/reception process again consists of the CSI controller cycling the
clock line SCKp to shift transmit data out through SOp while shifting receive data
in through SIp. During this activity the TSFmn bit is set, indicating that communi-
cation is in progress.

� When all seven or eight data bits have been transmitted and received, new transmit
data is copied from SDRmn to the shift register and another INTCSIp interrupt is
requested.

� The CSI ISR reads the received data from the SDRmn.

8.3.2.2 CSI-Specific Configuration

There are various additional configurable parameters for CSI mode.

� Data to be transmitted is written to the SIOp register, while received data is read
from SIOp as well.

� Data phase and clock phase are controlled using the DAPmn and CKPmn bits. Data
phase (DAP) determines whether data is valid after the starting edge of the clock or
before. Clock phase determines whether the clock’s rising or falling edge is used.

DAP
mn

CKP
mn SELECTION OF DATA AND CLOCK PHASE IN CSI MODE TYPE

0 0 SCKp

SOp

Slp input timing

D7 D6 D5 D4 D3 D2 D1 D0

1

0 1 SCKp

SOp

Slp input timing

D7 D6 D5 D4 D3 D2 D1 D0

2

1 0 SCKp

SOp

Slp input timing

D7 D6 D5 D4 D3 D2 D1 D0

3

1 1 SCKp

SOp

Slp input timing

D7 D6 D5 D4 D3 D2 D1 D0

4

188 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

8.3.3 UART Mode

8.3.3.1 Basic Concepts

The UART mode supports transmission and reception. Single and continuous transfers are
possible when transmitting. In addition, there is a snooze mode function which allows the
processor to save power and energy.

Figure 8.24 shows an example of a UART transmission using single transfer mode. After
writing to SSmn to enable communications, the data to transmit is written to SDRmn. This
data (with framing and optional parity) is then shifted out the TxDq pin. While the transmis-
sion occurs, the TSFmn bit is 1. When transmission completes, the TSFmn bit falls to 0 and
an optional interrupt (INTSTq) request is generated. The program can use an ISR to load the
next data to transmit into SDRmn. The program could instead use polling to wait until
TSFmn falls to 0 but this is usually not the preferred solution for reasons of efficiency.

Figure 8.25 shows an example of UART reception. The program writes to SSmn to en-
able the receiver. After the first data item is received the UART can request an INTSRq in-
terrupt which will trigger an ISR which reads the received data from SDRmn.

8.3.3.2 UART-Specific Configuration

There are additional configuration options for UART mode.

� One or two stop bits can be used.
� Parity can be set to none, even, or odd.
� The output data will be inverted if the SOLmn bit is set to 1.
� The input data will be inverted if the SISmn0 bit is set to 1.
� A noise filter for input data will be enabled if SNFENmn is set to 1.

8.3.3.3 Error Handling

There are two additional possible errors in UART mode.

� The FEFmn flag is set if a framing error occurred—the received stop bit was a 0
rather than the correct value of 1.

� The PEFmn flag is set if a parity error occurs—the received parity bit does not
match the calculated parity value.

8.3.4 Simplified IIC Mode

The SAU supports a simplified version of I2C communication which supports the most
common features of I2C: single master transmit and receive operations, 8-bit data length and

CHAPTER 8 / SERIAL COMMUNICATIONS 189

Tr
an

sm
it

D
a

ta
1

Tr
an

sm
it

D
a

ta
2

Tr
an

sm
it

D
a

ta
3

D
a

ta
tr

an
sm

is
si

on
(7

-b
it

le
ng

th
)

S
S

m
n

S
Tm

n

S
E

m
n

S
D

R
m

n

T
xD

q
pi

n

S
hi

ft
re

gi
st

er
m

n
IN

T
S

T
q

T
S

F
m

n

S
hi

ft
O

pe
ra

tio
n

S
hi

ft
O

pe
ra

tio
n

S
hi

ft
O

pe
ra

tio
n

D
a

ta
tr

an
sm

is
si

on
(7

-b
it

le
ng

th
)

D
a

ta
tr

an
sm

is
si

on
(7

-b
it

le
ng

th
)

Tr
an

sm
it

D
a

ta
1

Tr
an

sm
it

D
a

ta
2

Tr
an

sm
it

D
a

ta
3

S
T

P
S

P
S

T
S

P
S

T
P

S
P

P

Fi
g

u
re

8.
24

Ti
m

in
g

di
ag

ra
m

sh
ow

in
g

U
A

RT
tr

an
sm

is
si

on
in

si
ng

le
tr

an
sf

er
m

od
e.

190 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

R
ec

ei
ve

D
a

ta
1

R
ec

ei
ve

D
a

ta
2

D
a

ta
R

ec
ep

tio
n

(7
-b

it
le

ng
th

)

S
S

m
n

S
Tm

n

S
E

m
n

S
D

R
m

n

R
xD

q
pi

n

S
hi

ft
re

gi
st

er
m

n
IN

T
S

T
q

T
S

F
m

n

S
hi

ft
O

pe
ra

tio
n

S
hi

ft
O

pe
ra

tio
n

S
hi

ft
O

pe
ra

tio
n

D
a

ta
R

ec
ep

tio
n

(7
-b

it
le

ng
th

)
D

a
ta

R
ec

ep
tio

n
(7

-b
it

le
ng

th
)

R
ec

ei
ve

D
a

ta
1

R
ec

ei
ve

D
a

ta
2

R
ec

ei
ve

D
a

ta
3

S
T

P
S

T
S

T
P

P

R
ec

ei
ve

D
a

ta
3

S
P

S
P

S
P

Fi
g

u
re

8.
25

Ti
m

in
g

di
ag

ra
m

sh
ow

in
g

U
A

RT
re

ce
pt

io
n.

CHAPTER 8 / SERIAL COMMUNICATIONS 191

ACK generation and detection. More advanced features such as slave mode, arbitration sup-
port, and wait detection are not supported by SAU but instead by the IICA unit.

The simplified IIC communication mode works by operating on the individual sections
within the I2C packet: start condition, address and read/write command, send data, receive
data, and stop condition.

8.3.4.1 Basic Concepts

D7 D6 D5 D4 D3 D2 D1 D0

D7 D6 D5 D4 D3 D2 D1 D0

Address Field Transmission

Address R/W

Shift operation

SOmn bit manipulation

CKOmn
bit manipulation

SSmn

SEmn

SOEmn

SDRmn

SCLr output

SDAr output

Shift
register mn

INTIICr

TSFmn

SDAr input ACK

Figure 8.26 Timing diagram for start condition and device address transmission.

The start condition must be generated under software control as follows:

� Write 0 to SOmn to lower SDAr.
� Write 0 to CKOmn to lower SCLr.
� Write 1 to SOEmn to enable the serial communication output.
� Write 1 to SSmn to start transmission.

The address and the read/write bit must then be transmitted by writing them to the SIOr. The
transfer end interrupt will be generated after all eight bits are transmitted. Note that the par-
ity system is configured to expect a 0, which a slave device will send after it recognizes its
address. The ACK field is read by examining the parity error flag PEFmn. If it is 1 then no
ACK was sent by a slave. Otherwise a slave sent an ACK so communication can continue.

192 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

D7 D6 D5 D4 D3 D2 D1 D0

SSmn

SEmn

SOEmn

SDRmn

SCLr output

SDAr output

Shift
register mn

INTIICr

TSFmn

SDAr input D7 D6 D5 D4 D3 D2 D1 D0 ACK

Transmit Data 1

Shift operation

“L”

“H”

“H”

Figure 8.27 Timing diagram for data transmission.

Figure 8.27 shows the timing diagram for transmitting a byte of data. The master writes
that data to SIOr and awaits the transfer end interrupt. If the PEFmn flag is one, then the
data was not acknowledged by the slave. Otherwise it was acknowledged and communica-
tion can proceed.

Data reception proceeds as follows:

� Write 1 to STmn to stop communication temporarily and gain access to control
registers.

� Write 0 to TXEmn to disable the transmitter and 1 to RXEmn to enable the receiver.
� Write 1 to SSmn to start communication.
� Write dummy data (hexadecimal FF) to SIOr.
� Wait for transfer end interrupt.
� Read receive data from SIOr.

Figure 8.28 shows the waveforms for the stop condition, which must be generated by soft-
ware as follows:

� Stop transmission by writing a 1 to STmn.
� Write 0 to SOEmn to disable serial communication output.
� Write 0 to SOmn to lower the SDAr output.
� Write 1 to CKOmn to raise the SCLr output.

CHAPTER 8 / SERIAL COMMUNICATIONS 193

STmn

SEmn

SOEmn

SCLr output

SDAr output

Note

Operation
stop

SOmn
bit manipulation

CKOmn
bit manipulation

SOmn
bit manipulation

Stop condition

Figure 8.28 Timing diagram for stop condition

� Wait for a fixed time so that slave recognizes stop condition.
� Write 1 to SOmn to raise the SDAr output.

8.4 SERIAL COMMUNICATIONS DEVICE DRIVER CODE

Applilet allows for easy configuration and use of the Serial Array Unit, whether being used
for UART, CSI, or I2C communication. When using Applilet to configure the Serial Array
Unit, each different mode of communication has a predefined Application Programming
Interface (API) with a set of functions and global variables used to control communication.
Additionally, each API comes with several user-definable functions. For example, a user
can define what happens when transmission or reception of data is complete. In this section
we examine functions for both the SAU and the advanced IIC controller (IICA).

8.4.1 General Functions

8.4.1.1 SAU Functions

Table 8.1 shows a list of functions useful for every configuration of the Serial Array Unit
(SAU).

8.4.1.2 SAU Function Definitions

void R_SAUn_Create(void): This is the function called to initialize Serial Array Unit n
(e.g., SAU0 or SAU1). This function must be called before initializing or using any form of

194 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

TABLE 8.1 Functions Associated with Each Serial Array Unit (*n � 0,1 for SAU0 or SAU1)

FUNCTION NAME FUNCTION DESCRIPTION

R_SAUn_Create() Initializes Serial Array Unit n

R_SAUn_Set_SnoozeOn() Enables start function from STOP state of chip

R_SAUn_Set_SnoozeOff() Disables start function from STOP state of chip

R_SAUn_Set_PowerOff() Stops supply of input clock and all special function registers are reset

serial communications. It is important to initialize the correct Serial Array Unit correspon-
ding to the desired UART, CSI, or IIC.

Parameters: void
Returns: void

void R_SAUn_Set_SnoozeOn(void): If SNOOZE mode is available for the specified chan-
nel, this function enables SNOOZE mode. This allows for the channel to operate while the
chip is in the STOP state, and makes possible data reception that does not require the CPU.

Parameters: void
Returns: void

void R_SAUn_SetSnoozeOff(void): If SNOOZE mode is available for the specified
channel, this function disables SNOOZE mode.

Parameters: void
Returns: void

void R_SAUn_Set_PowerOff(void): This function stops supply of input clock and all
Special Function Registers (SFR) are reset.

Parameters: void
Returns: void

8.4.2 CSI API

8.4.2.1 CSI Functions

Table 8.2 shows a list of functions and their brief descriptions. Note that all functions are
associated with the CSI module to which they belong, so the “m” in the function name is

CHAPTER 8 / SERIAL COMMUNICATIONS 195

replaced by 00, 01, 10, 11, 20, 21 for CSI00, CSI01, CSI10, CSI11, CSI20, or CSI21 re-
spectively. Also, some functions are user-defined.

8.4.2.2 CSI Global Variables

The following table shows global variables used in the CSI API. These variables are asso-
ciated with the buffers where data is transmitted and received. As above, m � 00, 01, 10,
11, 20, 21 for CSI00, CSI01, CSI10, CSI11, CSI20, or CSI21. Note that a separate set of
variables is associated with each individual CSI module.

All of the variables are present for each instance of a CSI module, whether the
CSI module is in transmit only mode, receive only mode, or transmit/receive mode. How-
ever, not all variables are used in every mode. Table 8.4 shows which variables are used in
which mode.

Although these variables may be accessed globally, they need not be modified, as the
functions controlling each CSI module do this automatically. It is fine to read their values,
but it is also important to understand how each function modifies these values (see 8.4.2.3
CSI Function Definitions).

TABLE 8.2 Functions Associated with Each CSI.

FUNCTION NAME FUNCTION DESCRIPTION
USER-

DEFINED

R_CSIm_Create() Initializes the CSIm module

R_CSIm_Start() Starts the CSIm module

R_CSIm_Stop() Stops the CSIm module

R_CSIm_Receive() Sets up buffer for data reception from
CSIm module

R_CSIm_Send() Sends data from CSIm module

R_CSIm_Send_Receive() Simultaneously sends and receives data from CSIm
module

MD_INTCSIm() Interrupt Service Routine called at the end of
transmission/reception of each byte of
CSIm module

R_CSIm_Callback_ReceiveEnd ()† Callback function after CSIm reception

R_CSIm_Callback_Error ()† Callback function after CSIm
transmission/reception error

R_CSIm_Callback_SendEnd ()† Callback function after CSIm transmission

196 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

TABLE 8.3 Global Variables Associated with Each CSI Module.

GLOBAL VARIABLE NAME DESCRIPTION

uint8_t *gp_CsimRxAddress Address of uint8_t receive buffer for CSIm module

uint16_t g_CsimRxLen Length of the CSIm module receive buffer

uint16_t g_CsimRxCnt Number of bytes currently received so far by CSIm module

uint8_t *gp_CsimTxAddress Address of uint8_t transmit buffer for CSIm module

uint16_t g_CsimTxLen Length of the CSIm module transmit buffer

uint16_t g_CsimTxCnt Number of bytes left to be transmitted from CSIm module

8.4.2.3 CSI Function Definitions

void R_CSIm_Create(void): This is the function called to initialize CSI module m (e.g.,
CSI00, CSI01, CSI10, CSI11, CSI20, or CSI21). This function must be called prior to us-
ing any functions associated with the desired CSI module. However, this function is auto-
matically called by the R_SAUn_Create() function, so it is only necessary to call the cor-
responding R_SAUn_Create() function.

Parameters: void
Returns: void

void R_CSIm_Start(void): This function begins the operation of CSIm module and en-
ables communication. Once called, the interrupt associated with the CSIm module is also

TABLE 8.4 Variables Used per Mode for Each CSI Module

TRANSMIT/RECEIVE MODE GLOBAL VARIABLES USED

Receive Only Mode gp_CsimRxAddress

g_CsimRxLen

g_CsimRxCnt

Transmit Only Mode gp_CsimTxAddress

g_CsimTxCnt

Transmit/Receive Mode gp_CsimRxAddress

gp_CsimTxAddress

g_CsimTxCnt

CHAPTER 8 / SERIAL COMMUNICATIONS 197

enabled. It is important to note that no communication with the CSIm module can be
achieved until this function is called.

Parameters: void
Returns: void

void R_CSIm_Stop(void): When it is desired to stop communication with the CSIm
module, the module can be ordered to stop. This function ends the operation of the CSIm
module and disables communication on the module. Once called, the interrupt associated
with the CSIm module is disabled as well. Communication will cease until
R_CSIm_Start() is called again.

Parameters: void
Returns: void

MD_STATUS R_CSIm_Receive(uin t8_t *rxbuf, uint16_t rxnum): If the CSIm mod-
ule is set up in receive only mode, this function may be called to receive data. This function
activates the clock line (SCK) and writes dummy data to data out (SI) and reads rxnum
bytes coming in on the data in line (SI) and stores it in the designated rxbuf. Because this
function makes use of the CSIm hardware interrupt (see MD_INTCSIm()), this function
only commences the data reception. The CSIm hardware interrupt will call the
R_CSIm_Callback_ReceiveEnd() function when data reception is complete (when rxnum
bytes have been recieved). This function is only available if the CSIm module is designated
in Applilet to run in receive only mode.

Parameters: uint8_t * rxbuf—Pointer to the first element of the
receive buffer where the received data will be
placed

uint16_t rxnum—Number of bytes to receive and
place in the rxbuf buffer

Returns: MD_OK—Receive commenced successfully
MD_ARGERROR—Bad parameter

Global Variables Modified: g_CsimRxLen—Set to rxnum to indicate the length
of the receive buffer

g_CsimRxCnt—Set to zero to indicate zero bytes
received so far

gp_CsimRxAddress—Set to rxbuf to indicate the
head of the receive buffer

MD_STATUS R_CSIm_Send(uint8_t * txbuf, uint16_t txnum): If the CSIm module is
set up in transmit only mode, this function may be called to transmit data. This function

activates the clock line (SCK) and writes txnum bytes of the designated txbuf on the data
out line (SO) and ignores any incoming data on the data in line (SI). Because this function
makes use of the CSIm hardware interrupt (see MD_INTCSIm()), this function only com-
mences the data transmission. The CSIm hardware interrupt will call the R_CSIm_
Callback_SendEnd() function when data transmission is complete (when txnum bytes have
been sent). This function is only available if the CSIm module is designated in Applilet to
run in transmit only mode.

Parameters: uint8_t * txbuf—Pointer to the first element of the
transmit buffer where the designated string of
data is

uint16_t txnum—Number of bytes to send from the
txbuf buffer

Returns: MD_OK—Send commenced successfully
MD_ARGERROR—Bad Parameter

Global Variables Modified: g_CsimTxCnt—Set to txnum to indicate the number
of bytes left to be sent, and decremented by one
after the first byte is sent

gp_CsimTxAddress—Set to txbuf to indicate the
head of the transmit buffer, and then increased by
one to point to the next spot in the buffer after the
first byte is sent

MD_STATUS R_CSIm_Send_Receive(uint8_t * txbuf, uint16_t txnum, uint8_t *
rxbuf): If the CSIm module is set up in transmit/receive mode, this function may be called
to do a CSI transmit/receive data transfer. This function activates the clock line (SCK) for
the duration of the transfer, and txnum bytes of the designated txbuf are sent on the data out
line (SO) and simultaneously, txnum bytes are received on the data in line (SI) and stored
in the designated rxbuf. Because this function makes use of the CSIm hardware interrupt
(see MD_INTCSIm()), this function only commences transmission and reception.
The CSIm hardware interrupt will call both the R_CSIm_Callback_SendEnd() and
R_CSIm_Callback_ReceiveEnd() functions when the data transfer is complete (when all
txnum bytes have been sent/received). This function is only available if the CSIm module
is designated in Applilet to run in transmit/receive mode. It is important to make sure that
txbuf and rxbuf both must be at least txnum bytes long to prevent out-of-bounds memory
indexing.

Parameters: uint8_t * txbuf—Pointer to the first element of the
transmit buffer where the designated string of
data is

uint16_t txnum—Number of bytes to be transferred

198 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

CHAPTER 8 / SERIAL COMMUNICATIONS 199

uint8_t * rxbuf—Pointer to the first element of the
receive buffer where the received data will be
placed

Returns: MD_OK—Transfer commenced successfully
MD_ARGERROR—Bad Parameter

Global Variables Modified: g_CsimTxCnt—Set to txnum to indicate number
of bytes to send, and decremented by one after the
first byte is sent

gp_CsimTxAddress—Set to txbuf to indicate the head
of the transmit buffer, and then increased by one to
point to the next spot in the buffer after the first
byte is sent

gp_CsimRxAddress—Set to rxbuf to indicate the
head of the receive buffer

void MD_INTCSIm(void): This is the Interrupt Service Routine called by the hard-
ware after transmission of each single byte of data from the CSIm module. This func-
tion behaves slightly differently depending on which transmit/receive mode the CSIm
module is in.

If the CSIm module is in receive only mode, this interrupt is called after transmis-
sion of each dummy byte, and each time it is called, the next received byte is placed into
the receive buffer designated by the R_CSIm_Receive() function. When the total num-
ber of bytes have been received (also designated by the call to the R_CSIm_Receive()
function), the CSIm_Callback_ReceiveEnd () is called to indicate completion of
reception.

If the CSIm module is in transmit only mode, this interrupt is called after transmission
of each byte from the transmit buffer designated by the R_CSIm_Send() function. When
transmission is complete, and the number of bytes designated to be sent by the
R_CSIm_Send() function have been sent, the CSIm_Callback_SendEnd() function is called
to indicate completion of transmission.

If the CSIm module is in transmit/receive mode, this interrupt is called after transmis-
sion of each byte from the transmit buffer designated by the R_CSIm_Send_Receive()
function. Upon each call of this interrupt, the next received byte is placed into the receive
buffer designated by the R_CSIm_Send_Receive() function, thus defining a single transfer
of data. When the transfer is complete and the number of bytes designated to be sent by the
R_CSIm_Send_Receive() function have been sent, both the CSIm_Callback_SendEnd()
and the CSIm_Callback_ReceiveEnd() functions are called to indicate completion of trans-
mission and reception.

Parameters: void
Returns: void

200 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

Global Variables Modified: In Receive Only Mode:
gp_CsimRxAddress—Pointer is increased

by one to point to the next location in the
designated receive buffer
(see R_CSIm_Receive())

g_CsimRxCnt—Increased by one to indicate one
more byte of data received

In Transmit Only Mode:
gp_CsimTxAddress—Pointer is increased by one

to point to the next location in the designated
transmit buffer (see R_CSIm_Send())

g_CsimTxCnt—Decreased by one to indicate one
less byte of data to send

In Transmit/Receive Mode:
gp_CsimRxAddress—Pointer is increased by one

to point to the next location in the designated
receive buffer (see R_CSIm_Send_Receive())

gp_CsimTxAddress—Pointer is increased by one
to point to the next location in the designated
transmit buffer (see R_CSIm_Send_Receive())

g_Csim TxCnt—Decreased by one to indicate
one less byte of data to be transferred

void R_CSIm_Callback_ReceiveEnd(void): This function is invoked by the
MD_INTCSIm() Interrupt Service Routine when data that was designated to be received
by either the R_CSIm_Receive() or the R_CSIm_Send_Receive() functions has finished
reception. This is one of the three user-definable functions of the CSI API, so the user can
designate what happens when the CSI data reception is complete.

Parameters: void
Returns: void

void R_CSIm_Callback_Error(uint8_t err_type): This function is invoked by the
MD_INTCSIm() Interrupt Service Routine when an error is indicated by the Serial Status
Register (SSR) in the ISR. This function takes the error type as a parameter, and is one of
the three user-definable functions of the CSI API, so the user can designate what happens
when bad data reception has occurred.

Parameters: uint8_t err_type—The type of error generated by error in
the CSIm module data reception

Returns: void

CHAPTER 8 / SERIAL COMMUNICATIONS 201

void R_CSIm_Callback_SendEnd(void): This function is invoked by the MD_INTC-
SIm() Interrupt Service Routine when data that was designated to be sent by either the
R_CSIm_Send() or the R_CSIm_Send_Receive() functions has finished transmission.
This is one of the three user-definable functions of the CSI API, so the user can designate
what happens when CSI data transmission is complete.

Parameters: void
Returns: void

8.4.3 UART API

8.4.3.1 UART Functions

Table 8.5 shows a list of functions and their brief descriptions. Note that all functions are
associated with which UART they belong to. Note that the “m” in the function name is re-
placed with 0, 1, 2 for UART0, UART1, or UART2, respectively. Certain functions are
user-defined.

8.4.3.2 UART Global Variables

Table 8.6 shows global variables used in the UART API. These variables are associated
with the buffers where data is transmitted and received. Note that the following set of vari-
ables are associated with each individual UART.

Although these variables may be accessed globally, they need not be modified, as
the functions controlling the UART (see Table 8.5) do this automatically. It is fine to read
their values, but it is also important to understand how each function modifies these
values.

8.4.3.3 UART Function Definitions

void R_UARTm_Create(void): This is the function called to initialize UARTm
(e.g., UART0, UART1, or UART2). This function must be called prior to using any
functions associated with the desired UART. However, this function is automatically called
by the R_ function, so it is only necessary to call the corresponding R_ function.

Parameters: void
Returns: void

void R_UARTm_Start(void): This function begins the operation of UARTm and enables
communication with this UART. Once called, the interrupts associated with UARTm are

202 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

TABLE 8.5 Functions Associated with Each UART.

FUNCTION NAME FUNCTION DESCRIPTION
USER-

DEFINED

R_UARTm_Create() Initializes UARTm

R_UARTm_Start() Starts reception/transmission of UARTm

R_UARTm_Stop() Stops reception/transmission of UARTm

R_UARTm_Send() Transmits a string of data from UARTm

R_UARTm_Receive() Designates receive buffer for data received
by UARTm

R_UARTm_Interrupt_Receive() Interrupt Service Routine called at the end
of UARTm reception

R_UARTm_Interrupt_Error() Interrupt Service Routine called upon error
of UARTm reception

R_UARTm_Interrupt_Send() Interrupt Service Routine called at the end
of UARTm transmission

R_UARTm_Callback_ReceiveEnd() Callback function when UARTm finishes
reception

R_UARTm_Callback_SendEnd() Callback function when UARTm finishes
transmission

R_UARTm_Callback_Error() Callback function when UARTm reception
error occurs

R_UARTm_Callback_SoftwareOverRun() Callback function when UARTm receives
overflow data

TABLE 8.6 Global Variables Associated with Each UART; (m � 0, 1, 2 for UART0, UART1, or UART2)

GLOBAL VARIABLE NAME DESCRIPTION

uint8_t *gp_UartmTxAddress Address of uint8_t transmit buffer for UARTm

uint16_t g_UartmTxCnt Number of bytes left to be transmitted from UARTm

uint8_t *gp_UartmRxAddress Address of uint8_t receive buffer for UARTm

uint16_t g_UartmRxCnt Number of bytes currently received so far by UARTm

uint16_t g_UartmRxLen Length of UARTm receive buffer

CHAPTER 8 / SERIAL COMMUNICATIONS 203

also enabled. It is important to note that no communication with UARTm can be achieved
until this function is called.

Parameters: void
Returns: void

void R_UARTm_Stop(void): When it is desired to stop communication with a specific
UART, the UART can be ordered to stop. This function ends the operation of UARTm and
disables communication with this UART. Once called, the interrupts associated with
UARTm are disabled as well. This will prevent any further program interruption from out-
side communication to this UART, and all outside communication will be ignored until
R_UARTm_Start() is called.

Parameters: void
Returns: void

MD_STATUS R_UARTm_Send (uint8_t * txbuf, uint16_t txnum): To send a string of
data out through UARTm, this function may be called. The function takes a pointer to the be-
ginning of the string of data and the length of the data string. This function invokes the
UARTm transmit interrupt (R_UARTm_Interrupt_Send()), and although one byte of data is
transmitted at a time, only one call of this function is required to send an entire string of data.

Parameters: uint8_t * txbuf—Pointer to the first element of the
designated string of data

uint16_t txnum—Number of bytes to transmit
Returns: MD_OK—Data transmission successfully started

MD_ARGERROR—Bad parameter
Global Variables Modified: gp_UartmTxAddress—Set to txbuf pointer parameter

to indicate the head of the string of data to transmit
g_UartmTxCnt—Set to txnum parameter to indicate

number of bytes of data to send

MD_STATUS R_UARTm_Receive(uint8_t * rxbuf, uint16_t rxnum): To set up the re-
ceive buffer for communications on UARTm, this function may be called. The function
takes a pointer to the buffer and indicates the size of the buffer. By calling this function, all
incoming UART data will automatically fill the designated buffer.

Parameters: uint8_t * rxbuf—Pointer to the first element of the
designated receive buffer

uint16_t rxnum—Length of the designated receive
buffer

Returns: MD_OK—Receive buffer assigned successfully
MD_ARGERROR—Bad parameter

Global Variables Modified: g_UartmRxCnt—Set to 0 to indicate buffer has not
received any data

g_UartmRxLen—Set to rxnum parameter to indicate
how much space is available in the buffer before it
is full

gp_UartmRxAddress—Set to rxbuf pointer parameter
to indicate the head of the receive buffer

void R_UARTm_Interrupt_Receive(void): This is the Interrupt Service Routine called
by the hardware when each byte of data is received by UARTm. This function invokes
the R_UARTm_Callback_ReceiveEnd() and R_UARTm_Callback_SoftwareOverRun ()
functions.

Parameters: void
Returns: void
Global Variables Modified: gp_UartmRxAddress—The newest received byte of

data is stored at the location this pointer points to,
and the pointer is increased by one to point to the
next element in the designated receive buffer (see
R_UARTm_Receive()).

g_UartmRxCnt—Increased by one to indicate that one
more byte of data has been received.

void R_UARTm_Interrupt_Error(void): This is the Interrupt Service Routine called
by the hardware upon error in reception of data for UARTm, such as incorrect par-
ity. Every time this function is called, the R_UARTm_Callback_Error () function is
invoked.

Parameters: void
Returns: void
Global Variables Modified: gp_UartmRxAddress—The element that this pointer

points to gets updated with the newest received byte
of data, but unlike in R_UARTm_Interrupt_
Receive(), the pointer does not advance to the next
element in the designated receive buffer (see
R_UARTm_Receive()).

void R_UARTm_Interrupt_Send(void): This is the Interrupt Service Routine called by
the hardware after successful transmission of each single byte of data from UARTm. This

204 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

CHAPTER 8 / SERIAL COMMUNICATIONS 205

function invokes the R_UARTm_Callback_SendEnd() function at the end of transmission
if R_UARTm_Send() was used to transmit the data.

Parameters: void
Returns: void
Global Variables Modified: gp_UartmTxAddress—Pointer is increased by one to

point to the next location in the designated send
buffer (see R_UARTm_Send()).

g_UartmTxCnt—Decreased by one to indicate one
less byte of data to be sent.

void R_UARTm_Callback_ReceiveEnd(void): If the R_UARTm_Receive() function
was used to designate a receive buffer for UARTm data reception, then this function is
invoked by the R_UARTm_Interrupt_Receive() Interrupt Service Routine once the
buffer becomes full. This function is one of the four user-definable functions of the
UART API, so the user can designate what happens when the receive buffer becomes
full.

Parameters: void
Returns: void

void R_UARTm_Callback_SendEnd(void): If the R_UARTm_Send() function was
used to transmit a string of data from a buffer, then this function is invoked by the
R_UARTm_Interrupt_Send() Interrupt Service Routine when the entire string has finished
being transmitted. This function is one of the four user-definable functions of the UART
API, so the user can designate what happens when a string has finished transmission.

Parameters: void
Returns: void

void R_UARTm_Callback_Error(void): This function is called every time R_UARTm_
Interrupt_Error() Interrupt Service Routine is invoked by the hardware. This function takes the
error type as a parameter, and is one of the four user-definable functions of the UART API, so
the user can designate what happens when bad data reception has occurred.

Parameters: err_type—The type of error generated by error in UARTm data
reception (see Serial Status Register)

Returns: void

void R_UARTm_Callback_SoftwareOverRun(uint8_t rxdata): If the R_UARTm_Re-
ceive() function was used to designate a receive buffer for UARTm data reception, then this

function is invoked by the R_UARTm_Interrupt_Receive() Interrupt Service Routine when
data has been received, but the buffer is completely full. When this function is called, the
newest received byte of data will not have been put in the designated receive buffer, but in-
stead passed as a parameter into this function. If the R_UARTm_Receive() function was
not used to designate a receive buffer, then this function is invoked by the R_UARTm_
Interrupt_Receive() every time data is received. This function is one of the four user-
definable functions of the UART API, so the user can designate what happens when data is
received, but not able to be stored in the designated receive buffer.

Parameters: uint16_t rxdata—The newest received byte of data from UARTm
Returns: void

8.4.4 IIC API

Since the IIC modules in this API operate in simplified I2C communication, all communi-
cation is based on the RL78 microcontroller acting in master mode on any given bus. To
have an IIC module operate as a slave, use the IICA controller.

8.4.4.1 IIC Functions

Table 8.7 shows a list of functions and their brief descriptions. Note that all functions are
associated with which IIC module they belong to. As before m � 00, 01, 10, 11, 20, 21 for
IIC00, IIC01, IIC10, IIC11, IIC20, or IIC21. Certain functions are user-defined.

8.4.4.2 IIC Global Variables

The following table shows global variables used in the IIC API. These variables are associ-
ated with the buffers where data is transmitted and received. m � 00, 01, 10, 11, 20, 21 for
IIC00, IIC01, IIC10, IIC11, IIC20, or IIC21. Note that a separate set of variables is associ-
ated with each individual IIC module.

Although these variables may be accessed globally, they need not be modified, as the
functions controlling each IIC module (see Table 8.8) do this automatically. It is fine to
read their values, but it is also important to understand how each function modifies these
values.

8.4.4.3 IIC Function Definitions

void R_IICm_Create(void): This function is called to initialize IICm module (e.g.,
IIC00, IIC01, IIC10, IIC11, IIC20, or IIC21). This function must be called prior to using
any functions associated with the desired IIC module. However, this function is automati-

206 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

CHAPTER 8 / SERIAL COMMUNICATIONS 207

TABLE 8.7 Functions Associated with Each IIC

FUNCTION NAME FUNCTION DESCRIPTION
USER-

DEFINED

R_IICm_Create()* Initializes the IICm module

R_IICm_Master_Send() Sends data from the IICm module

R_IICm_Master_Receive() Receives data from the IICm module

R_IICm_Stop() Stops the IICm module

R_IICm_StartCondition() Generates a start condition on IICm module

R_IICm_StopCondition() Generates a stop condition on IICm module

R_IICm_Interrupt() Interrupt Service Routine called at the end of
transmission/reception of each byte of IICm
module

R_IICm_Callback_Master_Error() Callback function after IICm
transmission/reception error

R_IICm_Callback_Master_ReceiveEnd() Callback function after IICm master mode
reception

R_IICm_Callback_Master_SendEnd() Callback function after IICm master mode
transmission

cally called by the R_SAUn_Create() function, so it is only necessary to call the corre-
sponding R_SAUn_Create() function.

Parameters: void
Returns: void

void R_IICm_Master_Send(uint8_t adr, uint8_t * txbuf, uint16_t txnum): To send
data in master mode out of IICm module, this function may be called. Due to the nature of
I2C communication, the device address (adr) must be sent first. Then, this function initiates
transmission of txnum bytes of the designated txbuf transmit buffer. Because this function
makes use of the IICm hardware interrupt, this function only commences transmission.
The IICm hardware interrupt will call the R_IICm_Callback_Master_SendEnd() function
when transmission is complete (when txnum bytes have been sent). This function also in-
vokes the R_IICm_StartCondition() function to generate a start condition to initiate the be-
ginning of I2C bus communication.

Parameters: uint8_t adr—The 7-bit device address (shifted left by
one bit) of the desired device to communicate with
on the I2C bus

uint8_t * txbuf—Pointer to the first element of the
transmit buffer where the designated string of data is

uint16_t txnum—Number of bytes to send from the
txbuf buffer

Returns: void
Global Variables Modified: g_IicmMasterStatusFlag—Flag is cleared and set to

SEND status
g_IicmTxCnt—Set to txnum to indicate the number of

bytes left to be sent
gp_IicmTxAddress—Set to txbuf to indicate the head

of the transmit buffer.

void R_IICm_Master_Receive(uint8_t adr, uint8_t * rxbuf, uint16_t rxnum): To receive
data in master mode from the IICm module, this function may be called. Due to the nature of
I2C communication, the device address (adr) must be sent first. Then, this function initiates
communication with the desired device on the bus, and rxnum bytes received from the device
are placed in the designated rxbuf receive buffer. Because this function makes use of the IICm
hardware interrupt, this function only commences reception. The IICm hardware interrupt will
call the R_IICm_Callback_Master_ReceiveEnd() function when reception is complete (when
rxnum bytes have been received). This function also invokes the R_IICm_StartCondition()
function to generate a start condition to initiate the beginning of I2C bus communication.

Parameters: uint8_t adr—The 7-bit device address (shifted left by
one bit) of the desired device to communicate with
on the I2C bus

208 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

TABLE 8.8 Global Variables Associated with Each IIC Module.

GLOBAL VARIABLE NAME DESCRIPTION

uint8_t g_IicmMasterStatusFlag IICm module start flag for send address check by master mode

uint8_t * gp_IicmTxAddress Address of uint8_t transmit buffer of IICm module

uint16_t g_IicmTxCnt Number of bytes left to be transmitted from IICm module

uint8_t *gp_IicmRxAddress Address of unit8_t receive buffer of IICm module

uint16_t g_CsimRxCnt Number of bytes currently received so far by IICm module

uint16_t g_CsimRxLen Length of the IICm module receive buffer

CHAPTER 8 / SERIAL COMMUNICATIONS 209

uint8_t * rxbuf—Pointer to the first element of the
receive buffer where the received data will be
placed

uint16_t rxnum—Number of bytes to be received
Returns: void
Global Variables Modified: g_IicmMasterStatusFlag—Flag is cleared and set to

RECEIVE status
g_IicmRxLen—Set to rxnum to indicate the length of

the designated receive buffer
g_IicmRxCnt—Set to zero to indicate zero bytes

received so far
gp_IicmRxAddress—Set to rxbuf to indicate the head

of the receive buffer

void R_IICm_Stop(void): If at any point I2C communication is needed to stop, whether
or not communication is in progress, this function may be called to halt I2C communica-
tion on the IICm module. Communication may begin again afterward with calls to the
R_IICm_Master_Send() or the R_IICm_Master_Receive() functions (which both invoke
the R_IICm_StartCondition() function).

Parameters: void
Returns: void

void R_IICm_StartCondition(void): This function creates a start condition on the I2C
bus. This must be done prior to I2C bus communication, whether it is transmission or re-
ception. However, if using the R_IICm_Master_Send() or R_IICm_Master_Receive()
functions to communicate, this function is automatically invoked as to ensure proper
communication.

Parameters: void
Returns: void

void R_IICm_StopCondition(void): This function creates a stop condition on the I2C
bus. This must be done to end I2C bus communication, for both transmission and reception.
However, if using the R_IICm_Master_Send() or R_IICm_Master_Receive() functions to
communicate, this function is automatically invoked at the end of data communication by
the IICm hardware interrupt service routine (see R_IICm_Interrupt()) as to ensure proper
communication.

Parameters: void
Returns: void

void R_IICm_Interrupt(void): This is the Interrupt Service Routine called by the hard-
ware after communication of each single byte on the I2C bus, whether a byte was received
by the master or sent from the master.

If communication was commenced with the R_IICm_Master_Send() function, this in-
terrupt is called multiple times until transmission is complete (the designated number of
bytes from the transmit buffer are sent). Communication is then terminated by invoking the
R_IICm_StopCondition() function, and the R_IICm_Callback_Master_SendEnd() func-
tion is called.

If communication was commenced with the R_IICm_Master_Receive() function, this
interrupt is called multiple times until reception is complete (the designated number of
bytes have been received into the receive buffer). Communication is then terminated by in-
voking the R_IICm_StopCondition() function, and the R_IICm_Callback_Master_
ReceiveEnd() function is called.

If at any point communication error occurs, communication commenced with either
the R_IICm_Master_Send() or the R_IICm_Master_Receive() functions halts, and the in-
terrupt calls the R_IICm_Callback_Master_Error() function. In this case, the
R_IICm_StopCondition() function is not invoked.

Parameters: void
Returns: void
Global Variables Modified: If communication was commenced with the

R_IICm_Master_Send() function:
gp_IicmTxAddress—Pointer is increased by one to

point to the next location in the designated
transmit buffer

g_IicTxCnt—Decreased by one to indicate one less
byte of data to be sent

If communciation was commenced with the
R_IICm_Master_Receive() function:
g_IicmMasterStatusFlag—SENDED_ADDRESS

bit in flag is set to indicate communication is in
RECEIVE mode and is ready to receive to buffer

gp_IicmRxAddress—Pointer is increased by one to
point to the next location in the designated
receive buffer

g_IicmRxCnt—Increased by one to indicate one
more byte of data received

void R_IICm_Callback_Master_Error(MD_STATUS flag): This function is invoked
by the R_IICm_Interrupt() Interrupt Service Routine when an error is indicated by the Se-
rial Status Register. The function takes the error status as a parameter, and is one of the

210 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

CHAPTER 8 / SERIAL COMMUNICATIONS 211

three user-definable functions of the IIC API, so the user can designate what happens when
bad data communication has occurred.

Parameters: MD_STATUS flag—error flag indicated by the IIC hardware
interrupt. In the default set up of the IIC API, the only condition to
generate this function call is receiving a NACK before expected.
In this case, flag will be set to MD_NACK.

Returns: void

void R_IICm_Callback_Master_ReceiveEnd(void): This function is invoked by the
R_IICm_Interrupt() Interrupt Service Routine when the data that was designated to be re-
ceived by the R_IICm_Master_Receive() function has finished reception. This is one of the
three user-definable functions of the IIC API, so the user can designate what happens when
IIC data reception is complete.

Parameters: void
Returns: void

void R_IICm_Callback_Master_SendEnd(void): This function is invoked by the
R_IICm_Interrupt() Interrupt Service Routine when data that was designated to be sent by
the R_IIC_Master_Send() function has finished transmission. This is one of the three user-
definable functions of the IIC API, so the user can designate what happens when IIC data
transmission is complete.

Parameters: void
Returns: void

8.4.5 IICA API

Separate from both Serial Array Units, the RL78 provides an additional single IIC Ad-
vanced channel. Unlike the IIC modules associated with both Serial Array Units, the IICA
module supports a multi-master I2C bus, and is able to be set up as a slave node. The IICA
module also supports features of simplified I2C communication.

8.4.5.1 IICA Functions

Table 8.9 shows a list of functions and their brief descriptions. Since there is only one IICA
channel, these functions are exclusively for that channel. Certain functions are only avail-
able when IICA0 is set up in Single Master mode, while others are only available in Slave

mode. Finally, some functions are user-defined and are meant to be completed by the ap-
plication developer.

8.4.5.2 IICA Global Variables

The following table shows global variables used in the IICA API. These variables are asso-
ciated with the buffers where data is transmitted and received. There are also status flag
variables that are read and written between different functions.

Although these variables may be accessed globablly, they need not be modified, as the
functions controlling the IICA0 module (see Table 8.10) do this automatically. It is fine to
read the values, but it is also important to understand how each function modifies these val-
ues (see Function Definitions).

8.4.5.3 IICA Function Definitions

void R_IICA0_Create(void): This function is called to initialize IICA0 module. This
function must be called prior to using any functions associated with the IICA0.

Parameters: void
Returns: void

MD_STATUS R_IICm_Master_Send(uint8_t adr, uint8_t * txbuf, uint16_t txnum,
uint8_t wait): If IICA0 module is setup in Single Master mode, this function may
be called to transmit data. Due to the nature of I2C communication, the device ad-
dress (adr) must be sent first. Then, this function initiates transmission of txnum bytes
of the designated txbuf transmit buffer. Because this function makes use of the
IICA0 hardware interrupt, this function only commences transmission. The
IICA0 hardware interrupt will call the R_IICA0_Callback_Master_SendEnd() function
when transmission is complete (when txnum bytes have been sent). This function cre-
ates a start condition in hardware, and idles for wait cycles before transmitting the
address.

Parameters: uint8_t adr—The 7-bit device address of the desired
device to communicate with on the I2C bus

uint8_t * txbuf—Pointer to the first element of the
transmit buffer where the designated string of data is

uint16_t txnum—Number of bytes to send from the
txbuf buffer

uint8_t wait—Number of processor cycles to wait
before starting data transmission after the start
condition is issued

212 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

CHAPTER 8 / SERIAL COMMUNICATIONS 213

TABLE 8.9 Functions Associated with the IICA0

FUNCTION NAME FUNCTION DESCRIPTION

SINGLE
MASTER

ONLY
SLAVE
ONLY

USER-
DEFINED

R_IICA0_Create() Initializes the IICA0 module

R_IICA0_Master_Send() Sends data as master from the IICA0
module

R_IICA0_Master_
Receive()

Receives data as master from the
IICA0 module

R_IICA0_Slave_Send() Sends data as slave from the IICA0
module

R_IICA0_Slave_Receive() Receives data as slave from the IICA0
module

R_IICA0_Stop() Stops the IICA0 module

R_IICA0_StopCondition() Generates a stop condition on IICA0
module

R_IICA0_Set_PowerOff() Stops the clock supplied for IICA0

R_IICA0_Create_
UserInit()

Adds user-defined code after
initializing IICA0 module

R_IICA0_Interrupt() Interrupt Service Routine called at the
end of transmission/reception of each
byte of IICA0 module

R_IICA0_Callback_
Master_SendEnd()

Callback function after IICA0 master
mode transmission

R_IICA0_Callback_
Master_ReceiveEnd()

Callback function after IICA0 master
mode reception

R_IICA0_Callback_Slave_
SendEnd()

Callback function after IICA0 slave
mode transmission

R_IICA0_Callback_Slave_
ReceiveEnd()

Callback function after IICA0 slave
mode reception

R_IICA0_Callback_
Master_Error()

Callback function after IICA0 master
mode transmission/reception error

R_IICA0_Callback_Slave_
Error()

Callback function after IICA0 slave
mode transmission/reception error

R_IICA0_Callback_
GetStopCondition()

Callback function after IICA0 slave
mode stop condition

Returns: MD_OK—Data transmission commenced
successfully

MD_ERROR1—I2C bus is busy
MD_ERROR2—Cannot trigger I2C communication

(start or stop condition is in progress)
Global Variables Modified: g_Iica0MasterStatusFlag—Flag is cleared and set to

SEND status
g_Iica0TxCnt—Set to txnum to indicate the number

of bytes left to be sent
gp_Iica0TxAddress—Set to txbuf to indicate the head

of the transmit buffer

8.5 RECAP

In this chapter we have learned basic concepts for serial communications and three types
of communication protocols. We have examined the Serial Array Unit communication
controller and how it is configured to support CSI, UART, and simplified IIC protocols.
Finally, we have examined the serial communications API created by the Applilet code
generator.

8.6 EXERCISES

1. Write the code to configure the SAU1 channels 2 and 3 in CSI master mode with
clock phase reversed, data in phase with the serial clock, transfer rate of 1 MHz,
data MSB first, and eight-bit data. Use single-transfer mode and generate an inter-
rupt at the end of each transfer. Assume fCLK � 32 MHz.

214 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

TABLE 8.10 Global Variables Associated with the IICA0 Module.

GLOBAL VARIABLE NAME DESCRIPTION

uint8_t g_IicmMasterStatusFlag IICm module start flag for send address check by master mode

uint8_t * gp_IicmTxAddress Address of uint8_t transmit buffer of IICm module

uint16_t g_IicmTxCnt Number of bytes left to be transmitted from IICm module

uint8_t *gp_IicmRxAddress Address of unit8_t receive buffer of IICm module

uint16_t g_CsimRxCnt Number of bytes currently received so far by IICm module

uint16_t g_CsimRxLen Length of the IICm module receive buffer

CHAPTER 8 / SERIAL COMMUNICATIONS 215

2. Draw the clock, data, and interrupt request waveforms for the three-byte data se-
quence 0x93, 0x11, 0x41 being transmitted by the CSI unit as configured in the
previous exercise.

3. Write code to configure UART1 to operate at 12345 baud, one stop bit, eight data bits,
odd parity, and the LSB first. Assume fCLK � 32 MHz. What is the actual baud rate?

4. Write code to configure UART2 to operate at 4800 baud, two stop bits, eight data bits,
odd parity, and the LSB first. Assume fCLK � 32 MHz. What is the actual baud rate?

5. What are the lowest and highest baud rates possible for a UART with a fCLK �
32 MHz?

6. Draw the waveform for the three-byte data sequence 0x93, 0x11, 0x41 being trans-
mitted by UART at 60000 baud, MSB first, one stop bit, and even parity. Be sure
to mark when each transition occurs.

7. What are the differences between the SAU’s simplified I2C operating mode and the
IICA’s full I2C mode? Give an example of a system which could use the simplified
I2C, and another example of a system which would need to use the full I2C. Be
sure to explain your reasoning.

8. Why must the ACK bit in I2C communications be a 0 rather than a 1?
9. Write the code to do the following, and draw a waveform showing I2C signals and

activity for parts b. and c. below.
a. Configure the SAU0 channels 0 and 1 in simplified I2C mode operating at

200 kbps.
b. Write bytes 0x12, 0x34, 0x56 and 0x78 to address 0xA0.
c. Generate the stop condition.

217

9.1 LEARNING OBJECTIVES

In this chapter we show how timer peripherals work to measure elapsed time, count events,
generate events at specified times, and perform other more advanced features. It is possible
to cascade timers together when one timer does not provide the range needed. Using timers
it is also possible to output a square wave with a controllable frequency and duty cycle. In
this chapter we will cover the concepts behind these features and how to use them.

9.2 BASIC CONCEPTS

The core of a timer peripheral is a digital counter whose value changes by one each time it
is clocked. The faster the clocking rate, the faster the device counts. If the timer’s input
clock frequency is 10 MHz, then its period is the inverse of 10 MHz: 1/10 MHz or 0.1 �s.
Hence one count (increment or decrement) of the register represents 0.1 �s. We can meas-
ure how much time has passed since the counter was reset by reading the counter value and
multiplying it by 0.1 �s. For example, if the counter value is 15821, and the count direction
is up (incrementing), then we know that 1582.1 �s have passed since the counter was reset.

9.2.1 Support Circuitry

Timer peripherals are quite flexible. They are typically able to measure elapsed time, count
events, generate events at fixed times, generate waveforms, or measure pulse widths and
frequencies. The heart of the timer peripheral is a counter. This counter will count the
number of rising edges on its inputs. This admittedly simple capability becomes quite valu-
able with additional support logic. This circuitry controls factors such as:

� what signal source it counts, if it counts a signal with a known frequency, then we
can use it to measure elapsed time,

Timer Peripherals

Chapter NineChapter Nine

218 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

� when it starts and stop running,
� whether it counts rising or falling edges,
� which direction it counts,
� what happens when it overflows,
� how and if it is reloaded,
� whether its value is captured by another register or,
� whether it generates a signal or an interrupt.

9.2.2 Anemometer Example

We can use a timer peripheral in several ways to measure wind speed. We will use an
anemometer to generate a signal whose frequency depends upon wind speed. There are
two obvious methods:

� One way to measure wind speed is to measure the signal’s frequency—how many
cycles occur within a fixed amount of time. We can use the timer peripheral by set-
ting it up in event counter mode. We clear the timer, start it running, wait for the
fixed measurement time, and then read the count value. Dividing the count value
by the measurement time gives the signal frequency, and this can be scaled to pro-
vide wind speed.

� Another way to measure the wind speed is to measure the signal’s period—how
long a period lasts. We can use the timer peripheral by setting it up in timer mode,
so it counts at a given rate. We clear the timer and wait for a rising edge on the in-
put signal, at which point we start the timer counting. We wait for the next rising
edge on the input signal, at which point we stop the timer from counting. Dividing
the count value by the count frequency gives the period of the signal. We invert the
period and then scale it to determine wind speed.

The timer peripheral’s additional support circuitry mentioned above can be used to sim-
plify these measurement techniques to improve accuracy and reduce software processing
and complexity. We will examine these techniques in a later section.

9.3 INTERVAL TIMER

9.3.1 Overview

We begin by examining the RL78 family’s most basic timer peripheral—the Interval
Timer (IT), as shown in Figure 9.1. This peripheral consists of a 12-bit counter and sup-
port circuitry: clock source selection, enable logic, comparison logic (ITMC), and control

CHAPTER 9 / TIMER PERIPHERALS 219

logic. The IT generates an interrupt at a specified timer interval by counting an input clock
source. When the counter matches a user-specified value in the interval timer control regis-
ter (ITMC), a comparison circuit generates an interrupt (INTIT) and also clears the counter
back to 0.

The IT can count one of two possible clock sources, based on the WUTMMCK0 bit in
the Operation Speed Mode Control Register (OSMC):

� A 0 selects the subsystem clock fSUB. This clock’s frequency is typically
32.768 kHz, so the period is about 30.5176 �s.

� A 1 selects the internal low-speed oscillation clock fIL. This clock’s frequency is
nominally 15 kHz but can vary by 15 percent.

The Interval Timer Control Register (ITMC) has several fields:

� RINTE enables counting when set to 1 and otherwise disables counting.
� Bits ITCMP11–0 form a 12-bit value which controls the interrupt rate

finterrupt � fclock source /(ITCMP � 1).

9.3.2 Operation

Let’s examine the IT in operation, as shown in Figure 9.2. We configure the IT to use fSUB

so it will count at a frequency of 32.768 kHz. We load 0x0FF into ITCMP to set the com-
pare value to 255 (0x0ff). We set RINTE to 1 to enable the IT. The counter will reach
255 after 255 count clock cycles, or 255*30.5176 �s � 7.782 ms. At that point it is reset

Internal bus

Clear

Count clock

Match signal

Interval timer control
register (ITMC)

Interrupt
signal
(INTIT)

RINTE
WUTMM

CK0 ITMCMP11-ITMCMP0

Operation speed mode
control register (OSMC)

FSUB

fIL

S
el

ec
to

r

12-bit counter

Figure 9.1 Block Diagram of Interval Timer.

220 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

to 0 and an INTIT signal is generated. The period of the signal is (255 � 1) * 30.5176 �s �
7.78125 ms, and its frequency is 32.768 kHz/(255 � 1) � 128 Hz.

The procedure to configure the interval timer to generate a target interrupt frequency is
as follows.

1. Determine the desired frequency division ratio � fclock source /finterrupt.
2. Round the ratio to the nearest integer.
3. Subtract one and place the result in the compare register ITCMP.

9.3.3 Examples

� How should we configure the IT to generate an interrupt with a frequency of 1 kHz?
We have two options, based on which count clock source we use.
▫ If we use fSUB then we will need to divide 32.768 kHz by 32.768 to reach

1 kHz. This is not possible as digital counters can only divide by integer
values.1 The best we can do is round the division factor to 33 and place
33 � 1 � 32 in ITCMP. The resulting interrupt frequency will be 992.97 Hz

After RINTE is changed from 0 t 1, counting starts
at the next rise of the count clock signal.

When RINTE is changed from 1 to 0,
the 12-bit counter is cleared without
synchronization with the count clock.

Count clock

RINTE

12-bit counter

000H

ITCMP11-
ITCMP0

INTIT

0FFH

0FFH

Period (7.81 ms)

Figure 9.2 Interval Timer operation.

1 Fractional dividers are outside the scope of this text. For extra credit, the interested student can present a so-
lution which supports this feature!

CHAPTER 9 / TIMER PERIPHERALS 221

▫ If we use fIL then we need to divide 15 kHz by precisely 15. Placing 15 � 1 �
14 in ITCMP will result in an interrupt frequency of 1.0 kHz, assuming fIL is
in fact running at 15 kHz. Remember that there may be a timing error of up to
15 percent for this clock source, so we shouldn’t use it for precision timing
without compensating for the error.

� What is the smallest possible interval timer period?
We choose the faster of the available clock sources, which is fSUB. We set ITCMP
to the smallest possible value (0), so the resulting period is (0 � 1)/32.768 kHz �
30.52 �s.

� What is the largest possible interval timer period?
We choose the slower of the available clock sources, which is fIL. We set ITCMP to
the largest possible value (0x0fff, or 4191), so the resulting period is (4191 � 1)/
15 kHz � 279 ms.

9.4 TIMER ARRAY UNIT

9.4.1 Overview

Figure 9.3 shows a single channel from an RL78 Timer Array Unit. In this figure, the
counter is marked as Timer counter register 0n (TCR0n). Everything else in the diagram
is a support system for the TCR.

Note that the TAU0EN bit in the PER0 register needs to be set to one to use TAU0. If
the bit is zero, then the TAU is disabled to save power.

RL78-family microcontrollers may contain one or more timer array units (TAUs).
Each TAU contains eight 16-bit timers and a prescaler to generate clock signals for these
timers. RL78 MCUs in packages smaller than 80 pins only have one Timer Array Unit:
TAU0. RL78 MCUs in packages 80 pins and larger have two: TAU0 and TAU1. Some but
not all timer channels are connected to I/O pins. As shown in Figure 9.4, the package size
determines which timers exist, and which have an I/O pin connected.

9.4.2 Prescaler and Clock Sources

Sometimes we don’t want to count at the same frequency as the input clock. Dividing the
input clock frequency down is called prescaling. This makes it possible to configure a
timer to suit the application needs better.

Consider the previous example of a 16-bit counter with a 10 MHz clock source. We
wish to use it to measure elapsed time. We reset it to zero and then it begins counting, in-
crementing once every 0.1 �s.

222 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

S
la

ve
/m

as
te

r
co

nt
ro

lle
r

O
ut

pu
t

co
nt

ro
lle

r

In
te

rr
up

t
co

nt
ro

lle
r

Countclock
selection

Trigger
selection

S
la

ve
/m

as
te

r
co

nt
ro

lle
r

Operating
clockselection

E
dg

e
de

te
ct

io
n

T
im

er
co

un
te

r
re

gi
st

er
0n

(T
C

R
0n

)

T
im

er
da

ta
re

gi
st

er
0n

(T
D

R
0n

)

M
od

e
se

le
ct

io
n

T
im

er
co

nt
ro

lle
r

O
V

F
0n

O
ut

pu
tl

a
tc

h
(P

X
X
)

P
M

X
X

C
K

S
0n

C
C

S
0n

M
A

S
T

E
R

0n
S

T
S

0n
2

S
T

S
0n

1
S

T
S

0n
0

C
IS

0n
1

C
IS

0n
0

M
D

0n
3

M
D

0n
2

M
D

0n
1

M
D

0n
0

C
K

00

C
K

01
f M

C
K

f TC
LK

TO
0n

IN
T

T
M

0n
(T

im
er

in
te

rr
up

t)

T
im

er
st

a
tu

s
re

gi
st

er
0n

(T
S

R
0n

)

O
ve

rfl
ow

T
im

er
m

od
e

re
gi

st
er

0n
(T

M
R

0n
)

C
ha

nn
el

n

T
I0

n

R
em

ar
k

n
5

0,
2,

4,
6

Tr
ig

ge
r

si
gn

al
to

sl
av

e
ch

an
ne

l
C

lo
ck

si
gn

al
to

sl
av

e
ch

an
ne

l
In

te
rr

up
ts

ig
na

lt
o

sl
av

e
ch

an
ne

l

Fi
g

u
re

9.
3

Bl
oc

k
di

ag
ra

m
of

Ti
m

er
A

rr
ay

U
ni

t
ch

an
ne

l.

CHAPTER 9 / TIMER PERIPHERALS 223

Figure 9.4 Timer channels and I/O pins.

TIMER ARRAY
UNIT

CHANNELS

I/O PINS OF EACH PRODUCT

128-
pin

100-
pin

80-
pin

64-
pin

52-
pin

44, 48-
pin

40-
pin

30, 32,
36-pin

24, 25-
pin

20-
pin

U
ni

t
0

Channel 0 P00/TI00, P01/TO00

Channel 1 P16/TI01/TO01

Channel 2 P17/TI02/TO02

Channel 3 P31/TI03/TO03 —

Channel 4 P42/TI04/TO04 — — — — — —

Channel 5 P46/TI05/TO05 P05/TI05/TO05 — — — — — —

Channel 6 P102/TI06/TO06 P06/TI06/TO06 — — — — — —

Channel 7 P145/TI07/TO07 P41/TI07/TO07 — — — —

U
ni

t
1

Channel 0 P64/TI10/TO10 � � � � � � �

Channel 1 P65/TI11/TO11 � � � � � � �

Channel 2 P66/TI12/TO12 � � � � � � �

Channel 3 P67/TI13/TO13 � � � � � � �

Channel 4 P103/TI14/
TO14

� � � � � � � � �

Channel 5 P104/TI15/
TO15

� � � � � � � � �

Channel 6 P105/TI16/
TO16

� � � � � � � � �

Channel 7 P106/TI17/
TO17

� � � � � � � �

Remarks
1. When timer input and timer output are shared by the same pin, either only timer input or only timer output can be used.
2. —: There is no timer I/O pin, but the channel is available. (However, the channel can only be used as an interval timer.)
3. �: The channel is not available.

Eventually the counter will overflow because it has a limited count range. A 16-bit
counter can hold a maximum value of 0xffff � 65535. Incrementing it from this value it
will make it overflow (“roll over”) to 0x0000 � 0. If we read the counter value after this
has happened, our time reading will be too small by 65536 * 0.1 �s. So our counter only
has a useful time measurement range of 0 to 6553.5 �s. One way to be able to measure

224 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

longer time durations is by using a slower clock source. For example, if we reduce the
clock frequency from 10 MHz to 5 MHz, then the counter will increment every 0.2 �s, and
it will overflow after 65535 * 0.2 �s � 13107.0 �s. We can now measure a time period
twice as long, and each count represents twice as much time as before.

TAU0EN

Counter

CK3

CK2

CK0

CK1

fCLK

f c
lk

f c
lk
/2

f c
lk
/4

f c
lk
/8

f c
lk
/1

6

f c
lk
/3

2

f c
lk
/6

4

f c
lk
/1

28

f c
lk
/2

56

f c
lk
/5

12

f c
lk
/1

02
4

f c
lk
/2

04
8

f c
lk
/4

09
6

f c
lk
/8

19
2

f c
lk
/1

63
84

f c
lk
/3

27
68

Figure 9.5 Count source prescaler and selection.

The TAU includes four prescalers which generate divide the input signal fCLK to create sig-
nals CK0, CK1, CK2, and CK3. Each channel in the TAU can select use CK0 or CK1.
CK2 and CK3 are available to channels 1 and 3 in certain modes to enable different
prescaling factors.

The Timer Clock Select register TPS0 sets the division factors for the four prescalers.

� The bits PRS003 to PRS000 and PRS013 to PRS010 are grouped as two four-bit
values which control CK0 and CK1, respectively. Given a bit value of x in a field,
the output frequency is equal to the input frequency divided by 2x. This means that
division ratios from 20 � 1 to 215 � 32768 are possible.

� The bits PRS021 to PRS020 are used to control CK2. Possible division ratios are
2, 4, 16, and 64.

� The bits PRS031 to PRS030 are used to control CK3. Possible division ratios are
256, 1024, 4096, and 16384.

CHAPTER 9 / TIMER PERIPHERALS 225

9.4.3 Basic Timer Circuitry

Each timer channel has the following components, as shown in Figure 9.3.

� The Timer Counter Register (TCR0n) is the actual counter. A valid clock signal
makes it count. Certain events will cause it to be cleared to 0x0000 and others will
set it to 0xffff.

� The Timer Data Register (TDR0n) is a register which can be used in multiple ways.
It can hold a reload value to copy into the TDR0n when a certain event occurs
(e.g., overflow or underflow). It can hold a value which is compared against the
timer TCR value. It can capture the value in TCR0n when a certain event occurs.

� The timer can count different types of edges on the TI0n pin: falling edges, rising
edges, or both falling and rising edges.

� The timer can use different operation clock sources: CK00 or CK01, and some-
times CK02 or CK03.

� Various events (software command, interrupt, or a signal on an input pin) can be
used to trigger the start of counting or the capture of the counter value.

� The interrupt controller determines whether an interrupt (INTTM0n) is generated
and its timing details.

� The output controller determines whether a pulse is generated on the output pin
TO0 and its characteristics.

9.4.4 Independent Channel Operation Modes

The RL78 TAU timer channels can operate in several modes. In some of these modes, the
channels work independently, while in others they are coordinated (simultaneous mode) to
provide additional features.

9.4.4.1 Interval Timer and Square Wave Output

Two similar operation modes for a TAU channel are interval timer mode and square wave out-
put. Both of these modes have the same basic internal behavior and are illustrated in Figure 9.6.

0 The data register TDR0n is loaded with one less than the desired count period.
1 When the channel is started, TDR0n’s value is copied into TCR0n. TCR0n then

proceeds to count down with each clock pulse until reaching 0.
2 At that point in time the counter underflows, triggering multiple actions. First, the

value in TDR0n is copied into TCR0n to repeat the cycle. The second action depends
on the operating mode. In interval timer mode, an interrupt INTM0n will be re-
quested. In square wave output mode, the output pin TO0n will be toggled (inverted).

226 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

9.4.4.2 External Event Counter

This mode is used to count external events signaled by an input edge transition on the TI0n
pin. The counter can generate an interrupt when a specified event count is reached.

1 The TDR0n register must be loaded with one less than the desired event count.
2 This value is loaded into the timer counter register TCR0n when a channel start trig-

ger bit for the channel is set. The counter then counts down with each input event.
3 The counter generates an interrupt upon reaching zero, indicating that the specified

number of events have occurred.

9.4.4.3 Divider Function

Channel 0 can operate as a frequency divider. As shown in Figure 9.7, an input signal is ap-
plied to pin TI00, routed to the timer for division, and the resulting signal is sent out pin

a11 a11 a11 b11 b11 b11

0000H
TCR0n

TE0n

TDR0n

TO0n

INTTM0n

a b

TS0n

Remarks 1. n: Channel number (n 5 0 to 7)
2. TS0n: Bit n of timer channel start register 0 (TS0)

TE0n: Bit n of timer channel enable status register 0 (TE0)
TCR0n: Timer/counter register 0n (TCR0n)
TDR0n: Timer data register 0n (TDR0n)
TO0n: TO0n pin output signal

Figure 9.6 Interval timer and square wave output operation modes.

CHAPTER 9 / TIMER PERIPHERALS 227

TO00. This function allows the input signal to be divided by a ratio of 1 to 131072. The
output signal’s frequency is:

� The input frequency divided by TDR0n�1, when both rising and falling edges are
sensed by the edge detector.

� The input frequency divided by 2*(TDR0n�1), when only one type of edge is
sensed by the edge detector.

9.4.4.4 Input Pulse Interval Measurement

Edge
detection

C
lo

ck
se

le
ct

io
n

Tr
ig

ge
r

se
le

ct
io

n

Timer counter
register 00 (TCR00)

Timer data
register 00 (TDR00)

Output
controller

TI00 pin

TS00

TO00 pin

Figure 9.7 Frequency division of an external signal.

TS0n

TE0n

TI0n

TCR0n

TDR0n

INTTM0n

OVF

FFFFH

0000H

a
b

a b

c d

c d0000H

Figure 9.8 Input pulse
interval measurement.

228 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

This useful mode measures an input pulse interval by automating several activities with
hardware support. The counter counts up and is clocked by the operation clock.

1 Counting starts when the channel start trigger bit (TS0n) is set to 1.
2 When a valid edge occurs on the input pin TI0n, the value in counter register

TCR0n is copied over to the data register TDR0n. TCR0n is then cleared to 0 and
an interrupt signal INTTM0n is output.

3 An interrupt service routine is needed to read the value from TDR0n to determine
the pulse interval, and also to determine if an overflow occurred.

9.4.4.5 Measurement of Input Signal Pulse Width

C
lo

ck
se

le
ct

io
n

Tr
ig

ge
r

se
le

ct
io

n

Edge
detection

Interrupt
controller

Timer data
register 0n (TDR0n)

Timer counter
register 0n (TCR0n)

Operation
clock

TI0n pin Interrupt signal
(INTTM0n)

CK01

CK00

Figure 9.9 TAU channel configuration for pulse width measurement.

A timer channel can be used to measure how long an input signal is a one (or a zero). Con-
sider the example in Figure 9.9 and Figure 9.10, in which we wish to measure how long the
input signal (on pin TI0n) is a one.

1 The counter TCR0n is initially cleared to 0. It does not start counting until it is trig-
gered by the rising edge of TI0n, at which point it starts counting up.

2 The falling edge of TI0n marks the end of the input pulse and will trigger three ac-
tions. First, the counter stops counting. Second, the counter value is copied from
TCR0n to TDR0n for later reading by the program. Third, the interrupt INTTM0n
is requested.

3 The rising edge of TI0n will reset the counter TCR0n to 0 and start it counting
again, repeating the cycle.

We can then calculate the width of the input signal based on the input clock period, the cap-
ture value TDR0n, and whether an overflow occurred.

CHAPTER 9 / TIMER PERIPHERALS 229

9.4.4.6 Delay Counter

A timer channel can be used to generate an interrupt a certain time after an event occurs, as
shown in Figure 9.11.

1 We first load the TDR0n register with the desired delay value count. We connect
the event signal to input pin TI0n.

2 When a valid event occurs on that input, the delay count value in TDR0n will be
copied to TCR0n and down-counting will begin.

3 When TCR0n reaches 0, counting will stop and interrupt INTTM0n will be
generated.

Remarks 1. n: Channel number (n 5 0 to 7)
2. TS0n: Bit n of timer channel start register 0 (TS0)

TE0n: Bit n of timer channel enable status register 0 (TE0)
TI0n: TI0n pin input signal
TCR0n: Timer/counter register 0n (TCR0n)
TDR0n: Timer data register 0n (TDR0n)
OVF: Bit 0 of timer status register 0n (TSR0n)

TS0n

TE0n

TI0n

TCR0n

TDR0n

INTTM0n

OVF

FFFFH

0000H

a
b

a

c

b c0000H

Figure 9.10 Measuring input signal pulse width.

230 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

9.4.5 Simultaneous Channel Operation Modes

Multiple TAU channels can be connected together to provide more complex timing func-
tions. In these modes, one channel operates as the master and one or more operate as
slaves. Master channel registers are designated with an n suffix and slave channel registers
with a p suffix in this section and in the hardware manual.

9.4.5.1 One-Shot Pulse

We can use the TAU to create a pulse of a specified width which occurs a specified delay
time after an input event. In Figure 9.12 above the pulse is generated on signal TO0p. The
master channel operates as a delay counter to generate an interrupt a specified time (a � 2)
after the input event occurs on pin TI0n. The slave channel defines the pulse width (b), by
operating as another delay counter. The output pulse of a specified width is generated on
pin TO0p.

1 The master channel data register TDR0n is loaded by the program with the count
value a which will result in the desired delay. The slave channel data register
TDR0p is loaded with the count value b for the desired pulse width.

TS0n

TE0n

TI0n

TCR0n

TDR0n

INTTM0n

FFFFH

0000H

a b

a11 b11

Figure 9.11 Generating a delayed interrupt after an event.

CHAPTER 9 / TIMER PERIPHERALS 231

2 A valid input event on pin TI0n causes the master channel to copy the value in
TDR0n into the counter TCR0n and start it counting down, resulting in the desired
time delay before the output pulse.

3 When TCR0n reaches zero it generates an interrupt INTTM0n, which is fed to the
slave channel. The slave channel sets its output TO0p to a one, starting the output
pulse. It copies the desired pulse width value from TDR0p to TCR0p and starts it
counting down.

4 When TCR0p reaches zero it generates an interrupt INTTM0p and clears the out-
put TO0p to a zero, ending the output pulse.

9.4.5.2 Pulse Width Modulation

We can use the TAU to create a pulse-width modulated (PWM) signal. In Figure 9.13, the
PWM signal is the bottom waveform, labeled INTTMO0p. This mode is similar to the one-
shot pulse mode listed above, but the master channel timer runs does not stop and then
await an external trigger signal. Instead the master channel runs continuously.

TCR0p

TCR0n

TDR0n

INTTM0n

TDR0p

TO0p

INTTM0p

Master
channel

Slave
channel

TI0n

FFFFH

0000H

FFFFH

0000H

a

b

b ba12 a12

Figure 9.12 One-shot pulse output function.

232 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

The master channel defines the frequency of the PWM signal (defined with period
a � 1), while the slave channel defines the duty cycle. The duration of the output pulse is
set by parameter c. Hence we can calculate the duty cycle of the output signal as:

The frequency of the PWM signal is the count clock frequency divided by a � 1:

The following sequence of operations shows how to configure the TAU channels, and de-
scribes how they operate in PWM mode.

ƒ �
ƒCKn

(a � 1)

D � a c

a � 1
b * 100%

FFFFH

0000H

FFFFH

0000H

a

TCR0p

TCR0n

TDR0n

INTTM0n

TDR0p

TO0p

INTTM0p

Master
channel

Slave
channel

TS0n

a a

c c c

c c c

a11 a11 a11

Figure 9.13 Pulse-width modulation output function.

CHAPTER 9 / TIMER PERIPHERALS 233

1 The master channel data register TDR0n is loaded by the program with the count
value which will result in the desired pulse frequency. The slave channel data reg-
ister TDR0p is loaded with the count value for the desired pulse width.

2 When the master channel is started with by software setting the TS0n bit, two
events occur:

2.1 The timer will copy the value in TDR0n into the counter TCR0n and start it
counting down, measuring the time before the end of the period.

2.2 An overflow signal is asserted (which can trigger the INTTM0n interrupt). This
overflow signal forces the slave channel to (a) set its output signal TO0p, (b) load its
counter TCR0p from the data register TDR0p, and (c) start counter TCR0p counting
down. Item (a) raises the PWM signal to start the high portion of the signal.

3 When the slave counter TCR0p finally reaches zero, it generates an overflow sig-
nal which clears the output signal TO0p, ending the high portion of the PWM
signal. The overflow signal can generate be used to output signal INTTM0p.

4 At the end of the pulse period, TCR0n will reach zero it generates an interrupt
INTTM0n, which is fed to the slave channel. The slave channel sets its output
TO0p to a one, starting the output pulse. It copies the desired pulse width value
from TDR0p to TCR0p and starts it counting down.

5 When TCR0p reaches zero it generates an interrupt INTTM0p and clears the out-
put TO0p to a zero, ending the output pulse.

This example shows how to create a single PWM output signal using two channels. If we
need to generate multiple PWM signals at the same frequency but independent duty cycles,
we can use the same master channel to generate the base frequency, reducing the number
of TAU channels required. Further details on this mode (called multiple PWM output func-
tion) are given in the hardware manual.

9.5 EXAMPLES

Let’s see how to use the RL78 timers in a few different applications: an energy-measuring
device, an anemometer, and a servo motor controller. We will use Applilet to generate the
peripheral configuration and access code, which greatly simplifies our development
process.

9.5.1 Energy Meter: Precision Timing for AD Conversions

In an example in the chapter on analog interfacing we discussed how to use the AD con-
verter to measure a circuit’s power use based on its voltage and current. We can compute
energy by integrating power over time, but this requires an accurate timing reference.

234 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

In this example we will do this by using a timer peripheral to periodically trigger the
AD converter.

main Timer INTTM01 ISR AD Converter INTAD ISR

TM_Start() INTTM01 AD_start()

INTAD
INTAD
INTAD
INTADADC_done 5 1

INTTM01 AD_start()

INTAD
INTAD
INTAD
INTADADC_done 5 1

INTTM01 AD_start()

INTAD
INTAD
INTAD
INTADADC_done 5 1

INTTM01 AD_start()

Figure 9.14 Sequence chart for energy meter using timer and AD converter.

Figure 9.14 presents an overview of how we will use both hardware and software to ac-
complish this. A timer will generate a periodic interrupt (INTTM01) each time the input
signals are to be sampled. This interrupt will trigger an ISR which will then trigger the
AD converter to perform a burst of four sequential conversions.2 When each one of
these conversions completes, the AD converter generates an INTAD interrupt which in-
vokes the INTAD ISR. This ISR copies the results of the conversion from the AD con-
version result register into temporary storage, at which point it is ready for power and
energy calculations.

As shown in Figure 9.15, the main function will calculate the power and energy. The
ISR will update the global array ADC_value, which is read by the main function.

2 It is also possible to use INTTM01 to directly control the AD converter as a hardware trigger.

CHAPTER 9 / TIMER PERIPHERALS 235

We now have a new problem. What happens if the main program does not read
ADC_value fast enough, and the ISR updates the values? The resulting power and energy
calculations will be wrong. This is a possible data race, which depends upon the timing of op-
erations. We explore this problem and possible solutions in the chapter on task scheduling.

INTAD_FSM
_state

ADC_done

AD
Converter

INTAD
ISR

Main
program

ADC_value [0]

ADC_value [1]

ADC_value [2]

ADC_value [3]

Figure 9.15 Software Architecture showing execution threads and shared data.

True

True

ADC_done 55 0?

False

All channels done?
False

Read ADCR
update ADC_result
cur_channel_idx11

overrun 5 1

cur_channel_idx 5 0
ADC_done 5 1

Figure 9.16 Activity chart for AD_SAMPLING state of INTAD ISR.

236 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

Our simple but limited solution is to have the FSM detect overruns, as shown in Figure 9.16.
The FSM sets ADC_done to one after converting the last (fourth) channel. The main func-
tion clears ADC_done after reading the four conversion results. When the FSM converts the
first channel, it checks to see if ADC_done is zero. If it is not, then main has not read the pre-
vious results of the conversion, and an overrun condition has occurred so the ISR will set the
error flag overrun. Other possible approaches involve buffering the data or sending a signal
to trigger a task to process the data. We will examine these in later chapters.

AD_IDLE AD_SAMPLING

Start/
cur_channel_idx 5 0

INTAD/
ADC_done 5 0
ADC_result[cur_channel_idx] 5 ADCR .. 6
cur_channel_idx11

[cur_channel_idx .5 NUM_CH]/
ADC_done 5 1

cur_channel_idx 5 0

[cur_channel_idx , NUM_CH]

Figure 9.17 Revised state machine for INTAD ISR.

We also will need to change how the INTAD ISR FSM is controlled. In the power meter
example, the main function directly controlled the state variable before triggering the
AD converter. This will not work here because the timer will trigger the AD converter
asynchronously with respect to the main function. To deal with this, we will have main ini-
tialize the FSM once (before starting the timer). We will also need to make the FSM step
through the states on its own, as shown in Figure 9.17.

We will start with floating point calculation of power and energy, given our credos
of 1) seeking correctness first, and performance second, and 2) premature optimization be-
ing the root of nearly all evil (Knuth). We will investigate optimizations in the later chapter
on code optimizations.

We will use Applilet to configure the peripherals. First we need to set timer channel 1 to
operate as an interval timer, as shown in Figure 9.18.

Figure 9.18 Configuring timer 0 channel 1 as an interval timer.

CHAPTER 9 / TIMER PERIPHERALS 237

Next we set the period for the timer and interrupt characteristics, as shown in Figure 9.19.
We choose 100 ms as the period; later we may be able to improve this sampling rate for
better accuracy. We specify we would like the interrupt to be generated when counting first
starts, and then at the end of each counting period.

Figure 9.19 Defining timer 0 channel 1 interval and interrupt characteristics.

Now we are ready to modify our code to use the timer.

9.5.1.1 CG_timer_user.c

The timer ISR is filled in with a call to start the AD conversions.

#pragma vector = INTTM01_vect
_interrupt void MD_INTTM01(void)
{
/* Start user code. Do not edit comment generated here */
AD_Start();
/* End user code. Do not edit comment generated here */

}

9.5.1.2 CG_ad_user.c

The state machine for the INTAD ISR is updated as follows to match the revised design of
Figure 9.17.

238 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

#pragma vector = INTAD_vect
_interrupt void MD_INTAD(void)
{
/* Start user code. Do not edit comment generated here */
static UCHAR cur_channel_idx = 0;

switch (INTAD_FSM_state) {
case AD_SAMPLING:
if (ADC_done != 0) {
overrun = 1;

}
ADC_done = 0;
AD_Read(&(ADC_value[cur_channel_idx]));
cur_channel_idx++;
if (cur_channel_idx >= NUM_CHANNELS) {
cur_channel_idx = 0;
ADC_done = 1;

}
break;

case AD_IDLE:
default:
INTAD_FSM_state = AD_IDLE;
break;

}
/* End user code. Do not edit comment generated here */

}

9.5.1.3 CG_main.c

Applilet generates a function TAU0_Init() to initialize timer array unit 0, and calls this
function during systeminit() in __low_level_init(), which is called before main(). So this is
taken care of already.

We need to start the timer counting, but do not need to trigger the AD converter in soft-
ware anymore. However, we still need to enable the AD comparator, start the AD converter,
and initialize related variables.

The body of the infinite loop changes slightly. First we wait for the ADC_done flag to
be set, at which point we copy the data out of the array ADC_value. Note that there is a
slim chance of a data race condition—the INTAD ISR executing during the middle of our
copy. We could check ADC_done to ensure it is still set, which means our data was not
overwritten.

CHAPTER 9 / TIMER PERIPHERALS 239

Now we can calculate the input power, output power, efficiency and energy use. The
energy use depends on time between samples, which is 100 ms in this example.

void main(void)
{
/* Start user code. Do not edit comment generated here */
volatile float P_in, P_out, effic, energy = 0.0;
unsigned Vin, Vout, Iin, Iout;

/* Peripheral start function calls */
ADC_done = 0;
AD_ComparatorOn(); /* Enable ADC voltage comparator */
INTAD_FSM_state = AD_SAMPLING;
TAU0_Channel1_Start();

/* Endless control loop */
while (1U)
{
while (!ADC_done)
;

//Read the conversion results and calculate power in and out
P_in = K_CONVERSION*ADC_value[VIN_IDX]*ADC_value[IIN_IDX];
P_out = K_CONVERSION*ADC_value[VOUT_IDX]*ADC_value[IOUT_IDX];
ADC_done = 0;
effic = (P_in - P_out)/P_in;
energy += P_in*SAMPLE_PERIOD;

}

/* End user code. Do not edit comment generated here */
}

9.5.2 Anemometer with Pulse Width Measurement

The rotational speed of an anemometer is proportional to the wind speed, neglecting the er-
rors caused by inertia and friction. Let’s consider how to use a TAU channel to measure
wind speed using a cup anemometer, as shown in Figure 9.20.

240 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

The anemometer has one or more magnets mounted on the rotating portion and a magnetic
sensor (such as a reed switch) mounted on the fixed mast. The magnetic sensor generates a
pulse each time a magnet passes by, so the frequency of the signal will be proportional to
wind speed.

Consider an anemometer has a normally-closed reed switch and two magnets. The
switch closes twice per rotation. By wiring it as shown in Figure 9.21, the output signal
will be 0 V when the switch is closed, with a brief pulse to VCC when the magnet passes by
the switch SW.

Figure 9.20 A cup anemome-
ter for measuring wind speed.

Anem_Out

R1
100k

C1

0.01uF

SW

Figure 9.21 Schematic for cup anemometer circuit.

CHAPTER 9 / TIMER PERIPHERALS 241

We can calculate the frequency of the pulses by measuring the period Tanemometer and
then taking the inverse.

We need to compensate for measuring just the low portion of the signal rather than the en-
tire period. Examination with an oscilloscope reveals that the low part of the signal is about
90 percent of the total period. We will factor this into our calibration constant K above. We
also factor in the fact that two pulses are generated per full anemometer rotation.

vwind �
K * ƒclk

Tanemometer

main Timer Ch. 4 INTTM04 ISR

TAU0_Channel4_Start()

raw_wind_period
INTTM04

raw_wind_period
INTTM04

Figure 9.22 Sequence diagram for anemometer using pulse-width measurement.

The software for this approach is shown in Figure 9.22 and is quite simple, as the hardware
takes care of the heavy lifting. The main thread configures and starts the timer. The timer
generates an interrupt INTTM04 at the end of each input pulse. We modify the Applilet-
generated ISR to determine if an overflow occurred. If so, then the wind speed is too low to
measure, and we clear the global variable raw_wind_period to zero to indicate this error

242 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

condition. Otherwise the ISR reads the pulse width count from the TDR04 register and
place it in raw_wind_period.

/* Start user code for global. Do not edit comment generated here */
extern volatile unsigned raw_wind_period;
/* End user code. Do not edit comment generated here */

#pragma vector = INTTM04_vect
__interrupt void MD_INTTM04(void)
{
/* Start user code. Do not edit comment generated here */
if ((TSR04 & _0001_TAU_OVERFLOW_OCCURS) != 0U) {
/* overflow occurs */
raw_wind_period = 0;

} else {
raw_wind_period = TDR04;

}
/* End user code. Do not edit comment generated here */

}

At this point we have enough information to calculate wind speed. However, we will not do
this calculation in the ISR unless truly necessary, as our initial implementation (with float-
ing point math) will waste processor time, especially at high wind speeds. Instead,
we will have the main function calculate the wind speed when needed as follows:3

If raw_wind_period is equal to 0, we set wind_speed to 0, otherwise wind_speed �
K_ANEMOMETER/raw_wind_period.

/* Start user code for global. Do not edit comment generated here */
volatile unsigned raw_wind_period=0;
/* End user code. Do not edit comment generated here */

void main(void)
{
/* Start user code. Do not edit comment generated here */
float v_wind = 0.0, sum = 0.0;

/* Peripheral start function calls */

3 Note that there is a potential race condition here.

CHAPTER 9 / TIMER PERIPHERALS 243

TAU0_Channel4_Start();

/* Endless control loop */
while (1U) {
if (raw_wind_period > 0) {
v_wind = K_ANEMOMETER/raw_wind_period;

} else {
v_wind = 0;

}
sum += v_wind;

}
/* End user code. Do not edit comment generated here */

}

We use Applilet to generate code to configure the port and timer peripherals, as shown in
Figure 9.23, Figure 9.24, and Figure 9.25.

Figure 9.23 Configuring port 4 bit 2 for use as input to TAU0 channel 4.

Figure 9.24 Selecting pulse width measurement mode for TAU0 channel 4.

244 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

9.5.3 Using PWM Mode to Control a Servo Motor

Figure 9.25 Configuring channel 4 for pulse width measurement particulars.

Power

Pulse-width
Modulated

Output

Motor Power

Servo
Motor

Micro-
controller

Vin (analog)

R

Figure 9.26 Schematic for servo motor circuit.

In this example we will use an analog input voltage (generated by a potentiometer) to con-
trol the angular position of a servo motor. Servo motors typically use a pulse-width modu-
lated input to specify the desired output position. Specifications vary by motor, as per fre-
quency and duty cycle required. For our servo, a 1 ms pulse specifies rotating as far to the
left as possible, and a pulse of 2 ms specifies as far right as possible. Intermediate pulse du-
rations result in intermediate positions. Usually a frequency is not specified, but 50 Hz
(20 ms period) is adequate for smooth operation.

The hardware peripherals make the software quite simple to create. The sequence dia-
gram in Figure 9.27 shows how the hardware and software interact. First, the main function
configures the peripherals and starts timer channel 2, which generates an interrupt
(INTM02) at 50 Hz. This interrupt provides a timing reference for the slave timer channel
which generates the PWM signal. The interrupt also causes a timer interrupt service

CHAPTER 9 / TIMER PERIPHERALS 245

routine to run, in which the AD converter samples the analog input. The AD converter gen-
erates an interrupt (ADINT) when the conversion completes. The ISR which services
ADINT uses the AD conversion result to determine the appropriate pulse width and control
the slave timer channel accordingly.

9.5.3.1 TAU Configuration

We configure the timer array unit as follows:
First the digital I/O port (P31) on the same pin as the PWM output must be left unused.

main Timer Ch. 2 INTTM02 ISR AD Converter INTAD ISR

TM_Start()

Timer Ch. 3
(PWM Slave)

INTTM01 AD_start()
INTAD TAU0_Channel3_

ChangeDuty_for_
Servo()

INTTM01 AD_start()
INTAD TAU0_Channel3_

ChangeDuty_for_
Servo()

INTTM01 AD_start()
INTAD TAU0_Channel3_

ChangeDuty_for_
Servo()

Figure 9.27 Sequence diagram for PWM servo motor controller.

Figure 9.28 Leaving port 3 bit 1 unused by GPI/O circuitry.

246 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

Next we select PWM output mode for TAU 0 channel 2. This will prevent independent ac-
cess to channel 3.

Figure 9.29 Selecting PWM mode for channels 2 and 3.

Figure 9.30 Setting channel 2 PWM period and interrupt.

Next we configure channel 2 (the master channel) with the desired PWM period of 20 ms
(1/50 Hz). We also specify that an interrupt INTTM02 will be generated at the end of each
count sequence.

Next we configure channel 3 (the slave channel) with the desired initial duty value of
7.5 percent, and indicate that we would like an interrupt to be generated. This is necessary
for PWM operation.

CHAPTER 9 / TIMER PERIPHERALS 247

9.5.3.2 CG_main.c

The main() function is trivial. After initialization of peripherals it has no further work to do.

void main(void)
{
/* Start user code. Do not edit comment generated here */
/* Peripheral start function calls */
AD_ComparatorOn(); /* Enable ADC voltage comparator */
TAU0_Channel3_ChangeDuty_for_Servo(50);
TAU0_Channel2_Start();

/* Endless control loop */
while (1U) {
}

}

9.5.3.3 CG_timer_user.c

The ISR for INTTM01 simply triggers the AD converter.

#pragma vector = INTAD_vect
_interrupt void MD_INTAD(void)
{
USHORT adcval;
/* Start user code. Do not edit comment generated here */

Figure 9.31 Setting channel 3 PWM characteristics.

248 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

AD_Read(&adcval);
TAU0_Channel3_ChangeDuty_for_Servo(adcval/10);
//scale result by 1/10
/* End user code. Do not edit comment generated here */

}

9.5.3.4 CG_ad_user.c

The ISR for INTAD reads the AD conversion result, scales it, and then calls a function to
control the PWM output.

#pragma vector = INTTM02_vect
_interrupt void MD_INTTM02(void)
{
/* Start user code. Do not edit comment generated here */
AD_Start(); /* Start ADC (ADCS = 0n) */
/* End user code. Do not edit comment generated here */

}

9.5.3.5 CG_timer.c

The PWM control function TAU0_Channel3_ChangeDuty_for_Servo() is based on
Applilet-generated function called TAU0_Channel3_ChangeDuty() in CG_timer.c. The
calculations were broken out into separate lines to simplify debugging.

void TAU0_Channel3_ChangeDuty_for_Servo(UCHAR servo_ratio)
{
ULONG w = 0U;
ULONG period = 0;

period = 0xffff & (TDR02 + 1);

if (servo_ratio > 100U) {
servo_ratio = 100U;

}
w = servo_ratio; //use unsigned long math to avoid overflows
w *= period;
w /= 2000U;
w += period/20U; //add 5% for 0 position offset
TDR03 = (USHORT)w;

}

CHAPTER 9 / TIMER PERIPHERALS 249

Figure 9.32 shows a sample waveform generated on the output pin P31 by this program.
The pulse width is 1.6 ms.

9.6 RECAP

In this chapter we have learned about two different types of timer peripheral. The interval
timer is a basic timer, while the timer array unit contains multiple powerful and highly con-
figurable timers. We have seen how to use these timers to generate periodic interrupts and
pulse-width modulated signals. We have also seen how to use them to measure the pulse
width and frequency of digital input waveforms.

9.7 EXERCISES

1. Write the code to configure the interval timer to generate an interrupt with fre-
quency of 440 Hz. What is the actual frequency generated?

2. The nominal frequency for fIL is 15 kHz. Measure the actual frequency of this sig-
nal for your RL78-based system using software and an oscilloscope.

3. Write a program to configure the TAU to control a strobe light running at 120 Hz.
4. Write the code to generate a square wave with frequency as close to

31415.9265 Hz as possible, given a 32 MHz oscillator.
5. Explain the race condition mentioned in the anemometer example footnote.

Figure 9.32 Example PWM output waveform for servo motor.

250 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

6. Write a program to measure wind speed by counting anemometer rotations during
a known time period. Configure a TAU channel to count external pulses. Use soft-
ware to reset the counter every second and update a variable which represents the
average wind speed for the previous second.

251

10.1 LEARNING OBJECTIVES

In this chapter we examine two additional types of peripheral which improve system ro-
bustness or program execution speed. We first examine various peripherals which improve
system robustness.

� A watchdog timer detects if a program runs out of control.
� The cyclic redundancy check unit and RAM parity error detection system help ver-

ify that data has not been corrupted.
� The invalid memory access detection unit helps detect illegal memory access op-

erations that come from an out-of-control program.
� RAM and SFR guard functions protect certain RAM and SFR memory regions

from being modified.
� A low voltage detector warns the program if the supply voltage is failing.

We then examine two peripherals which accelerate program performance (execution speed
and responsiveness).

� The Direct Memory Access controller copies data between SFRs and RAM with-
out requiring program intervention, improving speed, and responsiveness.

� The Multiplier/Divider/Accumulator performs complicated mathematical opera-
tions in hardware to reduce operation time.

10.2 PERIPHERALS FOR ROBUSTNESS

Embedded systems are expected to work correctly, but they may sometimes malfunction.
Transient electrical noise from motors and other sources may lead to errors in program ex-
ecution. Hardware devices may fail. Software may encounter unexpected (and therefore
unsupported) events. It is very difficult and expensive to completely test a system in all

Peripherals for Robustness & Performance

Chapter TenChapter Ten

252 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

possible environments. Microcontrollers often include peripherals to detect abnormal
hardware or software behavior and reset the system in response.

10.2.1 Watchdog Timer

Many embedded systems are built to operate without an operator, so there should be a
mechanism that monitors the system for unexpected errors due to some hardware fault, an
unusual endless loop, or other fatal software bug. The watchdog timer serves the purpose
of automatically monitoring and recovering the system from such situations.

The watchdog timer is an internal hardware timer peripheral in the CPU or an external
device which resets the processor if it is not reset within a given period of time. The appli-
cation software needs to periodically reset the watchdog timer. If the application software
does not do this soon enough, the WDT overflows and the overflow signal is used to reset
the system. So, the watchdog timer can only help the system recover from faults which pre-
vent the timely refresh of the WDT.

Interval time controller
(Count value overflow time 3 3/4)

Window size check

Watchdog timer enable
register (WDTE)

Write detector to
WDTE except ACH

Clock
input

controller

17-bit
counter

Selector
Reset
output

controller

Internal bus

WDTINT of option
byte (000C0H)

Interval
time
interrupt

WDCS2 to WDCS0 of
option byte (000C0H)

Internal
reset
signal

Overflow signal

Window size
decision signal

Count clear
signal

WINDOW1 and
WINDOW0 of option

byte (000C0H)

WDTON of option
byte (000C0H)

fIL

fIL/26 to fIL/216

Figure 10.1 Block diagram of Watchdog Timer peripheral

CHAPTER 10 / PERIPHERALS FOR ROBUSTNESS & PERFORMANCE 253

WDT overflow limit

WDT
Count
Value

Reset

Start WDT Refresh WDT Refresh WDT WDT overflows,
resets MCU

Figure 10.2 WDT refresh and overflow activity.

10.2.1.1 Structure

The RL78 WDT peripheral is built around a 17-bit counter which generates a delay based
on an on-chip low-speed oscillator running at fIL (up to 17.25 kHz). If the WDT is not re-
freshed before the counter overflows, the overflow signal will reset the processor. In order
to refresh the WDT, a specific byte (ACH) must be written to the WDTE register during a
valid time window. This will clear the WDT counter and restart counting.

As there are several possible reset causes, which one is responsible can be determined
by examining the RESF (Reset Control Flag) register. If the WDT caused the reset, then
the WDTRF bit will be set.

Several aspects of the WDT peripheral can be configured and controlled using option
byte 0 located at address 000C0H in flash memory. Because it is in flash memory, the op-
tion byte must be defined as an initialized static variable (at address 000C0H) and cannot
be modified at run-time.

� The WDT can be enabled by setting the WDTON bit of the option byte 00C0H.
� The overflow time can be selected from a range of times from 3.7 ms to 3.8 s, us-

ing the WDCS2, WDCS1, and WDCS0 bits.
� The WDT can be configured to ignore refresh commands which occur outside of a

valid time window. This provides greater reliability and fault detection coverage.
The valid window can be the last 50%, 75%, or 100% of the watchdog timer pe-
riod, using the WINDOW0 and WINDOW1 bits. The 100% setting essentially dis-
ables the window setting.

� The WDT can generate an interval interrupt (INTWDTI) when the counter reaches
75% of the overflow time. This is controlled with the WDTINT bit.

10.2.1.2 Using the WDT

254 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

Figure 10.2 shows two examples of WDT activity. First, the WDT is operating with a
100% window, so any refresh before the WDT overflows will be valid. Our buggy program
starts the WDT, refreshes it twice and then gets caught in a busy wait loop. In this loop the
WDT is not refreshed, so the counter overflows and the WDT forces the processor to reset.

WDT overflow limit

WDT
Count
Value

Reset

Start WDT Refreshing WDT
with open window

works correctly

Trying to refresh WDT
when window is

closed resets MCU

Window Closed Window Open Window OpenWindow Closed

Figure 10.3 WDT refresh behavior with 50% window.

In Figure 10.3, we have limited the window to 50%. The first time the program tries to re-
fresh the timer it occurs within the window, so the refresh is successful. This restarts the
WDT and starts a new window cycle. Another bug in our program makes it try to reset the
WDT too early (before the window opens). Even though the correct refresh code (ACH) is
written to the WDTE register, it triggers a system reset because the window was closed.
For some critical systems this window feature is needed to provide extra assurance that the
program is operating correctly.

In a multitasking system, it is a best practice to have each task check in with a task
which monitors system-wide task progress. This monitor task will only reset the WDT if
all tasks are making adequate progress. One should never build a system in which the
WDT is reset automatically by a task or ISR which operates autonomously of the rest of
the system. This defeats the purpose of the WDT. For in-depth discussions of watchdog
timer use, we refer the reader elsewhere (Koopman, 2010).

CHAPTER 10 / PERIPHERALS FOR ROBUSTNESS & PERFORMANCE 255

10.2.2 Cyclic Redundancy Check Unit

Often an embedded system needs to validate that data is correct and has not been cor-
rupted. For example, a packet of data which is received from a network may have had some
bits corrupted by noise. Similarly, the program memory should be validated upon system
power-up to ensure that the system runs a valid program. One way of validating the data is
to include a check code with the stored data. To validate the data, the program needs to re-
calculate the check code based on the stored data. If this calculated code value matches the
stored code, then the data is correct.1 If they differ, then some of the data has been cor-
rupted and we cannot trust it.

One useful check code is a Cyclic Redundancy Check code. The CRC peripheral uses
the CRC-16-CCITT generator polynomial and supports two different operating modes.

In the first operating mode, the user program writes each byte to include in the CRC
calculation to the CRCIN register. The CRCD register holds the calculated CRC, and is
used in subsequent CRC calculations After all input data has been written to CRCIN, the
resulting CRC is available in the CRCD register.

In the second operating mode, dedicated hardware automatically scans an entire flash
memory region and calculates its CRC. As this is performed in hardware, it is much faster
than a software approach, such as the first operating mode. Checking 64 KB of flash ROM
takes 512 s with a 32 MHz system clock.

The CRC peripheral needs to be configured to specify amount of memory to check, be-
ginning with address 0. The CRC check operation is triggered by the execution of the
HALT instruction after the CRC0EN bit has been set. When the comparison has com-
pleted, the processor resumes executing the instruction following the HALT. It can then ex-
amine the result of the CRC operations, which is stored in the PGCRCL register. If the reg-
ister does not match the stored value, then the program memory is corrupt and the
processor should shut down.

10.2.3 RAM Parity Error Detection

Each byte of internal RAM in RL78 MCUs is protected with a parity bit. This parity bit is
automatically calculated on writes and checked on reads. If a parity error is detected on a
read, the parity error status flag RPEF will be set. In addition, if the RPERDIS bit is
cleared, then the parity error will trigger an MCU Reset. The RPERF flag in the RESF reg-
ister will be set if the processor was reset due to a RAM parity error.

m

1 There is a slight chance that it is incorrect, in the case that the corrupted data and the original data have the
same check code. However, the codes are designed to make this highly unlikely.

256 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

10.2.4 Invalid Memory Access Detection

CONTENTS READ WRITE FETCH INSTRUCTIONS

SFRs

OK

OK
Invalid

RAM OK

Mirror
Invalid Invalid

Data Flash Memory

Reserved
OK

OK

2nd set of SFRs Invalid

Reserved

Invalid

OK

Reserved Invalid Invalid

Code Flash Memory OK OK

Figure 10.4 Invalid memory access detection regions. Region addresses are listed in the
hardware manual memory map.

It is possible for the memory system to detect certain types of invalid memory accesses
and respond by resetting the MCU. As shown in Figure 10.4, there are three types of
memory access: read, write, and instruction fetch. Setting the IAWREN bit will cause
detection of reads, writes, and fetches at invalid addresses. The IAWRF bit in RESF
will be set if an illegal memory access caused the reset, simplifying diagnostics and
debugging.

10.2.5 RAM & SFR Guard Functions

The RAM guard function prevents a portion of RAM from being written, though it can still
be read. A write to a protected area of RAM has no effect. This is helpful for protecting crit-
ical operating parameters from corruption. The amount of RAM protected (0, 128, 256, or
512 bytes) is determined by bits GRAM1 and GRAM0.

The SFR guard function prevents certain critical special function registers from being
written. The GPORT bit controls protection of GPIO port control registers. The GINT bit
controls protection of interrupt control registers. The GCSC flag controls access to clock
control, voltage detection, and RAM parity error detection registers.

CHAPTER 10 / PERIPHERALS FOR ROBUSTNESS & PERFORMANCE 257

10.2.6 Voltage Detector

<

V
ol

ta
ge

de
te

ct
io

n
le

ve
ls

el
ec

to
r

C
on

tr
ol

le
r

Reference
voltage
source

S
el

ec
to

r

LVIOMSK LVIMD LVILV LVIF

Internal bus

VLVIH

VLVIL

VDD VDD

Internal
reset
signal

INTLVI

Voltage detection
register (LVIM)

Voltage detection
level register (LVIS)

Option byte (000C1H)
LVIS1, LVIS0

Option byte (000C1H)
VPOC2 to VPOC0

N-ch

1

2

Figure 10.5 Block diagram of voltage detector peripheral.

A brownout condition in a microcontroller occurs when the supply voltage for the micro-
controller temporarily drops enough that portions of the microcontroller may malfunction.
The main purpose of automatically detecting the brownout condition is to prevent the
processor from operating with a voltage below the guaranteed range. When a brownout oc-
curs, the detector holds the processor in a reset state. It is also helpful to be warned early of
an impending brownout condition with an interrupt. The processor can respond by shutting
off output devices, saving critical data, and perhaps logging a fault code.

The RL78 Voltage Detector peripheral (shown in Figure 10.5) can compare the VDD

supply rail with two configurable voltage levels. The upper level (VLVIH) determines at
what voltage the low voltage interrupt is triggered. It also is used as the supply rail
rises again to determine when the processor comes out of reset and starts running again.
The lower level (VLVIL) determines at what voltage the processor’s reset signal is
asserted.

As there are several possible reset causes, which one is responsible can be deter-
mined by examining the RESF register. If the LVD caused the reset, then the LVIRF bit
will be set.

The reset and interrupt features can be used individually or together, based on the
bits LVIMDS1 and LVIMDS0 in the option byte 00C1H. The output of the comparator
can be read directly as LVIF. If the LVD is enabled and VDD is below VLVI, then the flag
will be set.

258 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

Let’s take a look at using both features. Figure 10.6 shows various configuration options for
the LVD when both interrupt and reset are enabled. The first issue to consider is what our
MCU’s normal supply voltage will be, as this affects which thresholds are useful to us. The
MCU supports operation with VDD ranging from 1.6 to 5.5 V; let’s consider a nominal 1.8 V
supply voltage. The LVD should not be triggered by this supply voltage, so we will need to se-
lect one of the first three rows in the figure, with VPOC2 � 0, VPOC1 � 0, and VPOC0 � 0.
Let’s configure the LVD as in the first row and see how the system behaves.

Figure 10.7 shows the circuit behavior.

� VDD is normally at 1.8 V but starts to fall.
� An INTLVI interrupt will be generated when VDD falls below VLVIH � 1.73 V. The

LVIF flag will be set, indicating a low supply voltage.

� When used as interrupt & reset mode

DETECTION VOLTAGE OPTION BYTE SETTING VALUE

VLVIH VLVIL

LVIMDS1 LVIMDS0 VPOC2 VPOC1 VPOC0 LVIS1 LVIS0
RISING
EDGE

FALLING
EDGE

FALLING
EDGE

1.77 V 1.73 V 1.63 V 1 0 0 0 0 1 0

1.88 V 1.84 V 0 1

2.92 V 2.86 V 0 0

1.98 V 1.94 V 1.84 V 0 0 1 1 0

2.09 V 2.04 V 0 1

3.13 V 3.06 V 0 0

2.61 V 2.55 V 2.45 V 0 1 0 1 0

2.71 V 2.65 V 0 1

3.75 V 3.67 V 0 0

2.92 V 2.86 V 2.75 V 0 1 1 1 0

3.02 V 2.96 V 0 1

4.06 V 3.98 V 0 0

Other than above Setting prohibited

Figure 10.6 Configuring the LVD peripheral.

CHAPTER 10 / PERIPHERALS FOR ROBUSTNESS & PERFORMANCE 259

� If VDD keeps falling, when it reaches VLVIL � 1.63 V the MCU will be forced into
reset. The MCU will not come out of reset until VDD rises past 1.77 V.

� If instead VDD doesn’t fall to VLVIL � 1.63 V then the processor will not be reset.
When VDD rises past VLVIH � 1.73 V the LVIF flag will be cleared.

10.3 PERFORMANCE

There are various peripherals which are designed to speed up specific operations which are
slower than desired when implemented in software. Here we examine the direct memory
access controller and the hardware multiplier/divider/accumulator.

10.3.1 Direct Memory Access Controller

A Direct Memory Access (DMA) controller copies data in memory. It is much faster than
a software move because no instructions need to be executed, and because dedicated hard-
ware allows responsive triggering, again without involving software.

1.8 V

VLVIH

VLVIL

VDD

0 V

INTLVI

LVIF

Reset

Figure 10.7 Low voltage detection circuit operation.

260 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

The RL78 family MCUs have two or four DMA controller channels. Each channel oper-
ates independently, and can transfer data between internal SRAM and SFR space. The DMA
controllers are configured as follows, where n indicates the DMA controller channel number:

� The DENn bit enables the DMA controller.
� The DRSn bit defines the direction of the transfer: from RAM to SFR (1), or SFR

to RAM (0).
� The DSn bit defines whether bytes (0) or words (1) will be transferred.
� The DRAn register specifies the low word of the SRAM address. The upper nibble

is set to FH. This address is automatically incremented by 1 or 2 after each trans-
fer based upon whether bytes or words are transferred.

� The DSAn register specifies the low byte of the SFR address. The upper portion is
set to FFFH. This address is not incremented.

� The DBCn register specifies how many transfers to perform. Values from 1 to 1024
are possible.

� The STGn bit allows software to trigger a DMA transfer.
� The DSTn bit indicates that the DMA transfer is still ongoing (1) or completed (0).
� The DWAITn bit forces a DMA request to wait rather than be serviced immediately.
� The IFCn3 to IFCn0 bits specify the trigger condition for initiating the DMA

transfer(s). Transfers can be triggered by software command or by a hardware in-
terrupt signal from the ADC, serial communications interfaces, or timers.

After a DMA controller completes transferring all of its data it generates an INTDMAn in-
terrupt request.

Let’s consider how to use the DMA channel 1 controller in conjunction with the ADC.
Figure 10.8 shows an overview of the behavior. We will set up a timer to generate a peri-
odic interrupt which causes the ADC to scan and sample four channels. Each conversion
results in an ADINT interrupt which is used to trigger a DMA transfer from the ADC result
register (addresses FFF1EH and FFF1FH) to a buffer in RAM, starting at address
FFCE0H. When all twelve words have been transferred, the DMA controller will generate
a DMAINT interrupt to signal the completion. At this point we can notify the main code
that its data is ready in RAM and disable the timer.

Note that the only software processing required after the peripherals have been config-
ured and started is the ISR of the DMA controller. This allows very low run-time overhead,
and quick, precise response.

10.3.2 Multiplier/Accumulator/Divider

Some RL78 family processors include a multiplier/accumulator/divider unit (called MD
for brevity) to accelerate those mathematical operations. The MD unit supports several
operations:

CHAPTER 10 / PERIPHERALS FOR ROBUSTNESS & PERFORMANCE 261

� Signed and unsigned multiplies: 16 bit � 16 bit � 32 bit
� Signed and unsigned multiply/accumulates: 16 bit � 16 bit � 32 bit � 32 bit
� Unsigned divide: 32 bits/32 bits � 32 bit integer quotient, 32 bit integer remainder

Rather than use the general purpose registers such as AX, BC, DE, and HL to hold
operands, commands, and results, the MD unit uses its own special function registers.
These consist of six 16-bit data registers (MDAH, MDAL, MDBH, MDBL, MDCH, and
MDCL) and one 8-bit control register (MDUC). To use the MD unit the program config-
ures MDUC to specify the desired operation, according to Table 10.1.

The program then loads the MD data registers with the input data as shown in
Table 10.3. In multiply mode or multiply/accumulate mode, writing to MDAH and MDAL
starts the multiplication. In division mode, the DIVST bit must also be set to 1 to start the
division. After the operation completes, the results are available in the MD registers as
shown in Table 10.4. The status flags shown in Table 10.2 can be examined if needed.

A multiply takes one clock cycle after the last operand is written, while a multiply ac-
cumulate takes two clock cycles. A division operation takes sixteen clock cycles after the
DIVST flag is set. It is possible to configure MDUC so that the MD unit generates an
INTMD interrupt when a division completes.

main Timer AD Converter DMA Controller

TM_Start()

DMA ISR

INTTM01

INTAD

INTAD

INTAD

INTAD

INTAD

INTAD

INTAD

INTAD

INTAD

INTAD

INTAD

INTAD

INTTM01

INTTM01

INTADADC_done 5 1

Figure 10.8 Sequence diagram using timer, ADC, and DMA controller to sample four ADC channels
with minimal software intervention.

262 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

TABLE 10.1 Multiplier/Accumulator/Divider Operation Selection

DIVMODE MACMODE MDSM OPERATION SELECTED

0 0 0 Multiply, unsigned

0 0 1 Multiply, signed

0 1 0 Multiply/accumulate, unsigned

0 1 1 Multiply/accumulate, signed

1 0 0 Divide, unsigned, generate interrupt when complete

1 1 0 Divide, unsigned, no interrupt generated

TABLE 10.2 Multiplier/Accumulator/Divider Flags

FLAG DESCRIPTION

MACOF Multiply/accumulate overflow

MACSF Multiply/accumulate sign flag

DIVST Division operation status. 1 � division in progress

TABLE 10.3 MD Operand Locations

OPERATION MDAH MDAL MDBH MDBL MDCH MDCL

Multiply Multiplier Multiplicand

Multiply/
Accumulate

Multiplier Multiplicand

Divide Dividend
(high word)

Dividend
(low word)

Divisor
(high word)

Divisor
(low word)

TABLE 10.4 MD Result Locations

OPERATION MDAH MDAL MDBH MDBL MDCH MDCL

Multiply Product
(high word)

Product
(low word)

Multiply/
Accumulate

Product
(high word)

Product
(low word)

Accumulator
(high word)

Accumulator
(low word)

Divide Quotient
(high word)

Quotient
(low word)

Remainder
(high word)

Remainder
(low word)

CHAPTER 10 / PERIPHERALS FOR ROBUSTNESS & PERFORMANCE 263

10.4 RECAP

In this chapter we have examined two types of peripherals.
The first improves robustness by detecting anomalous system behavior or operating

conditions. The watchdog timer resets the processor if it is not refreshed at the right times.
The CRC unit and RAM parity system detect corrupted data. Invalid memory accesses can
be detected and trigger a reset. The RAM and SFR guard features prevent certain critical
memory regions from being modified. The low voltage detector warns the processor of an
impending power failure and can hold it in reset as appropriate.

The second improves program performance. The DMA controller accelerates data
transfers by removing the need to execute instructions to perform them. The Multiplier/
Divider/Accumulator performs those operations quickly.

10.5 REFERENCES

Koopman, P. J., Better Embedded System Software. Pittsburgh: Drumnadrochit Education, 2010.

10.6 EXERCISES

1. Write a function to configure the LVD to generate a low voltage interrupt when the
supply voltage falls below 2.92 V.

2. Write a program which uses a timer and DMA to sample port P0 every 100 micro-
seconds and store the results in RAM.

3. Write a two-dimensional matrix multiplication function which uses the MD unit.
Assume 16-bit signed data and arbitrary matrix size.

4. Write a dot product function which uses the MD unit. Assume 16-bit signed data
and arbitrary matrix size.

265

11.1 LEARNING OBJECTIVES

Most embedded systems have multiple independent tasks running at the same time. Which
activity should the microprocessor perform first? This decision determines how responsive
the system is, which then affects how fast a processor we must use, how much time we
have for running intensive control algorithms, how much energy we can save, and many
other factors. In this chapter we will discuss different ways for a microprocessor to sched-
ule its tasks, and the implications for performance, program structure, and related issues.

11.2 MOTIVATION

Consider an embedded system which controls a doorbell in a house. When a person at the
front door presses the switch, the bell should ring inside the house. The system’s respon-
siveness describes how long it takes from pressing the switch to sounding the bell. It is
easy to create a very responsive embedded system with only one task. The scheduling ap-
proach shown below is an obvious and simple approach:

1. void main (void){
2. init_system();
3. while(1){
4. if(switch == PRESSED){
5. Ring_The_Bell();
6. }
7. }
8. }

Our doorbell is very responsive. In fact, we like it so much that we decide to add in a smoke
detector and a very loud beeper so we can be warned about a possible fire. We also add a
burglar detector and another alarm bell. This results in the code shown on the next page.

Designing Responsive and Real-Time Systems

Chapter ElevenChapter Eleven

266 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

1. void main (void){
2. init_system();
3. while(1){
4. if(switch == PRESSED){
5. Ring_The_Doorbell();
6. }
7. if(Burglar_Detected() == TRUE){
8. Sound_The_Burglar_Alarm();
9. }
10. if(Smoke_Detected() == TRUE){
11. Sound_The_Fire_Alarm();
12. }
13. }
14. }

Going from one task to three tasks has complicated the situation significantly.1 How should
we share the processor’s time between these tasks?

� How long of a delay are we willing to accept between smoke detection and the fire
alarm sounding? And the delay between the switch being pressed and the doorbell
sounding?

� Should the system try to detect smoke or burglars while the doorbell is playing?
� Should the doorbell work while the smoke alarm is being sounded? What about

when the burglar alarm is sounding?
� Which subsystem should the processor check first: the doorbell, the smoke detec-

tor, or the burglar detector? Or should it just alternate between them?
� Should the doorbell switch be checked as often as the smoke and burglar detectors,

or at a different rate?
� What if the person at the door presses the switch again before the doorbell finishes

sounding? Should that be detected?

Now that we have to share the processor, we have to worry about how long the bell rings
and the alarms sound. If we use a doorbell ringtone which lasts for thirty seconds, then
Ring_The_Bell will take at least thirty seconds to run. During this time, we won’t know if
our house is burning or being robbed. Similarly, what if the firemen come when the alarm
is sounding? How quickly should the doorbell respond in that case?

1 In fact, any number of tasks greater than one complicates the situation!

CHAPTER 11 / DESIGNING RESPONSIVE AND REAL-TIME SYSTEMS 267

11.3 SCHEDULING FUNDAMENTALS

This example reveals the two fundamental issues in scheduling for responsive systems.

� If we have multiple tasks ready to run, which one do we run first? This decision de-
fines the ordering of task execution.

� Do we allow one task to interrupt or preempt another task (or even itself)?
� Both of these decisions will determine the system’s responsiveness (measured by

response time):
▫ How long will it take for the most important task to start running? To finish

running? Does this depend on how long any other tasks take to run, and how
often they run?

▫ How long will it take for the least important task to start running? To finish
running? We expect it will depend on how long all the other tasks take to run,
and how often they run.

� If we allow tasks to preempt each other, then a task may start running very soon
but finish much later, after multiple possible preemptions.

These response times in turn affect many performance-related issues, such as:

� How fast must the processor’s clock rate be to ensure that nothing happens “late”?
� How much time do we have available for running compute-intensive algorithms?
� How much energy can we save by putting the processor to sleep?
� How much power can we save by slowing down the processor?

Task Time

Task A

Time

Current Task

Scheduler

Latency

Response Time

Task A

Figure 11.1 Diagram and definitions of scheduler concepts.

Figure 11.1 shows a visual representation of some arbitrary scheduling activity. Task A is
released (becomes ready to run) at the first vertical bar. There is some latency between
the release and when the task starts running, due to other processing in the system and

268 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

scheduler overhead. Similarly, there is a response time which measures how long it takes
task A to complete its processing. Some scheduling approaches allow a task to be pre-
empted (delayed) after it has started running, which will increase the response time.

11.3.1 Task Ordering

The first factor affecting response time is the order in which we run tasks. We could al-
ways follow the same order by using a static schedule. The code shown for the Doorbell/
Fire Alarm/Burglar Alarm uses a static schedule. Figure 11.2 shows an interesting case. If
a burglar broke in and a fire broke out just after someone pressed the switch to ring the
doorbell, we wouldn’t find out about the burglar for almost thirty seconds and the fire
for about sixty seconds. We probably do not want these large delays for such critical
notifications.

We can change the order based on current conditions (e.g., if the house is on fire) using
a dynamic schedule. An obvious way to do this is to reschedule after finishing each task.
A dynamic schedule lets us improve the responsiveness of some tasks at the price of de-
laying other tasks. For example, let’s prioritize fire detection over burglar detection over
the doorbell.

1. void main (void){
2. init_system();
3. while(1){
4. if(Smoke_Detected() == TRUE){
5. Sound_The_Fire_Alarm();
6. } else if (Burglar_Detected() == TRUE) {
7. Sound_The_Burglar_Alarm();
8. } else if (switch == PRESSED) {
9. Ring_The_Doorbell();
10. }
11. }
12. }

Notice how this code is different—there are else clauses added, which change the schedule
to a dynamic one. As long as smoke is detected, Sound_The_Fire_Alarm() will run repeat-
edly. The burglar alarm and doorbell will be ignored until no more smoke is detected. Sim-
ilarly, burglar detection will disable the doorbell. This is shown in Figure 11.2.

This strict prioritization may or may not be appropriate for a given system. We may
want to ensure some fairness, perhaps by limiting how often a task can run. Later in this
chapter we present a periodic table-based approach which is much better than this hard-
coded design.

CHAPTER 11 / DESIGNING RESPONSIVE AND REAL-TIME SYSTEMS 269

11.3.2 Task Preemption

The second aspect to consider is whether one task can preempt another task. Consider our
thirty-second doorbell ringtone—the task Ring_The_Doorbell will run to completion
without stopping or yielding the processor.

What if a burglar breaks the window a split second after an accomplice rings the door-
bell? In this worst-case scenario, we won’t find out about the burglar (or a possible fire) for
thirty seconds.2 Let’s say we’d like to find out within one second. We have several options:

� Limit the maximum duration for the doorbell ringtone to one second.
� Add another microprocessor which is dedicated to playing the doorbell ringtone.

This will raise system costs.

Friend rings doorbell

Burglar breaks in

Fire breaks out

Doorbell Burglar Alarm Fire Alarm Burglar Alarm Fire Alarm

Doorbell Fire Alarm Fire Alarm Fire Alarm Fire Alarm

Fire Alarm Fire Alarm Fire Alarm Fire Alarm Fire Alarm

Negligible
delay

30 seconds

60 seconds

30 seconds

Figure 11.2 Doorbell/fire alarm/burglar alarm system behavior with different scheduling
approaches.

2 Imagine what Thomas Crown, James Bond, or Jason Bourne could do in that time!

270 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

� Break the Ring_The_Doorbell function into thirty separate pieces (e.g., with a
state machine or separate functions), each of which takes only one second to run.
This code will be hard to maintain.

� Allow the smoke and burglar detection code to preempt Ring_The_Doorbell. We
will need to use a more sophisticated task scheduler which can (1) preempt and re-
sume tasks, and (2) detect events which trigger switching and starting tasks. We will
not need to break apart any source code. This will make code maintenance easier.
However, we introduce the vulnerability to race conditions for shared data, and we
also will need more memory (enough to hold each task’s stack simultaneously).

Let’s apply this preemption option to our system. We assign the highest priority to fire de-
tection, then burglar detection, and then the doorbell. Now we have the response timeline
shown in Figure 11.2. The system starts sounding the doorbell after the switch is pressed,
but as soon as the fire is detected, the scheduler preempts the Ring_The_Doorbell and
starts running Sound_The_Fire_Alarm. We find out about the fire essentially immediately,
without having to wait for the doorbell to finish sounding.

As with the previous example, we have strict prioritization without control of how of-
ten tasks can run. As long as smoke is detected, Sound_The_Fire_Alarm() will run repeat-
edly. The burglar alarm and doorbell will be ignored until no more smoke is detected. Sim-
ilarly, burglar detection will disable the doorbell.

11.3.3 Fairness and Prioritization

These examples all show one weakness of our system: prioritizing some tasks over others can
lead to starvation of lower priority tasks (they may never get to run). For some systems this is
acceptable, but for others it is not. Here are two ways of providing some kind of fairness:

� We can allow multiple tasks to share the same priority level. If both tasks are ready
to run, we alternate between executing each of them (whether by allowing each
task to run to completion, or by preempting each periodically).

� We can limit how often each task can run by defining the task frequency. This is
the common approach used for designers of real-time systems. Note that we can
still allow only one task per priority level.

11.3.4 Response Time

For the two non-preemptive examples in Figure 11.2, notice how the response time for the
fire alarm and the burglar alarm depends on how long the doorbell sounds. However, for
the preemptive approach those response times are independent of how long the doorbell

CHAPTER 11 / DESIGNING RESPONSIVE AND REAL-TIME SYSTEMS 271

sounds. This is the major benefit of a preemptive scheduling approach: it makes a task’s re-
sponse time essentially independent of all processing by lower priority tasks.3 Instead,
only higher priority tasks can delay that task.

3 There are exceptions when tasks can communicate with each other with semaphores and other such mecha-
nisms, but that is beyond the scope of this introductory text.
4 Of course, if task code can disable interrupts, then there will be three more edges leading from the ISRs back
to the tasks! That would be a total of twelve dependences, which is quite a few to handle.

Non-Preemptive
Static Scheduling

Non-Preemptive
Dynamic Scheduling

Preemptive
Dynamic Scheduling

9 dependencies
- Higher priority tasks and ISRs
- Lower priority tasks

8 dependencies
- Higher priority tasks and ISRs
- Slowest task

6 dependencies
- Only higher priority tasks

and ISRs

Task C is
slowest task

Task B’s response
time depends on
Task C’s duration

ISRs ISRs ISRs

A
A A

C C

C

BB

B

Figure 11.3 Timing dependences of different scheduling approaches.

In Figure 11.3 we present these relationships in a graph. Tasks and ISRs are nodes, while
edges (or arcs) are timing dependences. For example, the edge from B to C indicates that
task B’s response time depends on task C’s duration. We can now compare timing depen-
dences for these three classes of scheduler.

� With the non-preemptive static scheduler, each task’s response time depends on
the duration of all other tasks and ISRs, so there are nine dependences.4

� With the non-preemptive dynamic scheduler, we assign priorities to tasks (A � B � C).
In general, a task no longer depends on lower priority tasks, so we have more timing in-
dependence and isolation. This accounts for six dependences. The exception is the

272 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

slowest or longest duration task, which is C in this example. If task C has started run-
ning, it will delay any other task, regardless of priority. So the higher priority tasksA and
B each have a dependence edge leading to task C in Figure 11.3, which results in a total
of eight dependences.

� With the preemptive dynamic scheduler, we also prioritize the tasks (A � B � C).
Because a task can preempt any lower priority task, the slowest task no longer mat-
ters. Each task can be preempted by an ISR, so there are three dependence edges to
begin with. Task A cannot be preempted by B or C, so it adds no new edges. Task B
can be preempted by task A, which adds one edge. Finally, task C can be pre-
empted by task A or B, which adds two more edges. As a result we have only six
dependences. Most importantly, these dependence edges all point upwards.5 This
means that in order to determine the response time for a task, we only need to con-
sider higher priority tasks. This makes the analysis much easier.

The real-time system research and development communities have developed extensive
precise mathematical methods for calculating worst-case response times, determining if
deadlines can ever be missed, and other characteristics of a system. These methods con-
sider semaphores, task interactions, scheduler overhead, and all sorts of other complexities
of practical implementations. We provide an introduction to these concepts later in this
chapter in Section 11.7.

11.3.5 Stack Memory Requirements

The non-preemptive scheduling approaches do not require as much data memory as the
preemptive approaches. In particular, the non-preemptive approach requires only one call
stack, while a preemptive approach typically requires one call stack per task.6

The function call stack holds a function’s state information such as return address and
limited lifetime variables (e.g., automatic variables, which only last for the duration of a
function). Without task preemption, task execution does not overlap in time, so all tasks can
share the same stack. Preemption allows tasks to preempt each other at essentially any point
in time. Trying to reuse the same stack space for different tasks would lead to corruption of
this information on the stack. For example, task B is running. Function B3 in task B calls
function B4. The scheduler then preempts task B to run the higher priority task A, which
was running function A2. Function A2 completes and it expects to return to function A1,

5 This is called a DAG or directed acyclic graph.
6 There are several ways to reduce the number of stacks needed for preemptive scheduling, but they are beyond
the scope of this text.

CHAPTER 11 / DESIGNING RESPONSIVE AND REAL-TIME SYSTEMS 273

which called A2. However, the call stack has function B3�s information on the stack, so
Task A will start executing function B3! And so the system fails to operate correctly.

As a result of these memory requirements for preemptive scheduling approaches, there
are many cost-sensitive embedded systems which use a non-preemptive scheduler to mini-
mize RAM sizes and therefore costs.

11.3.6 Interrupts

Interrupts are a special case of preemption with dedicated hardware and compiler support.
They can be added to any of these scheduling approaches in order to provide faster, time-
critical processing. In fact, for many systems only interrupt service routines are needed for
the application’s work. The main loop is simply an infinite loop which keeps putting the
processor into a low-power idle mode.

When designing a system which splits between ISRs and task code, one must strike
a balance. The more work which is placed in an ISR, the slower the response time for
other processing (whether tasks or other ISRs7). The standard approach is to perform
time-critical processing in the ISR (e.g., unloading a character from the UART received
data buffer) and deferring remaining work for task code (pushing that character in a
FIFO from which the task will eventually read). ISR execution duration affects the re-
sponse time for other code, so it is included in the response time calculations described
in Section 11.3.4 and in Figure 11.3.

11.4 TASK MANAGEMENT

11.4.1 Task States

A task will be in one of several possible states. The scheduler and the task code itself both
affect which state is active. With a non-preemptive dynamic scheduler, a task can be in
any one of the states8 shown in Figure 11.4:

� Waiting for the scheduler to decide that this task is ready to run. For example, a
task which asked the scheduler to delay it for 500 ms will be in this state for that
amount of time.

7 It is possible to make ISRs interruptable, but this introduces many new ways to build the system wrong.
Hence it is discouraged.
8 We consider preemption by an ISR as a separate state. However, since it operates automatically and saves and
restores system context, we consider it as a separate enhancement to the RTC scheduler and leave it out of our
diagrams. In fact, the scheduler relies on a tick ISR to track time and move tasks between certain states.

274 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

� Ready to start running but not running yet. There may be a higher-priority task
which is running. As this task has not started running, no automatic variables have
been initialized, and there is no activation record.

� Running on the processor. The task runs to the completion of the task function,
at which point the scheduler resumes execution and the task is moved to the wait-
ing state. Automatic variables have been initialized, and there is at least one acti-
vation record on the stack frame for this task. A single processor system can have
only one task in this state.

Consider a task which needs to write a block of data to flash memory. After issuing a write
command to the flash memory controller, it may take some significant amount of time
(e.g., 10 ms) to program the block. We have two options with a non-preemptive kernel:

� Our task can use a busy wait loop until the flash block programming is complete.
The task remains in the running state while programming. This approach delays
other processing and wastes processor cycles.

� We can break the task into a state machine so that task state one issues the write
command, task state two checks to see if the programming is done, and task state
three continues with the task’s processing. The task executes task state two each
time it is called as long as programming is not done. The task spends most of its
time waiting, with occasional brief periods running when executing the code for
task state two. This approach complicates program design but is practical for
smaller systems. However, it grows unwieldy for complex systems.

Ready

Waiting

Running

Scheduler Tick
ISR or other task
marks this task

as Ready

Scheduler selects
highest priority
ready task and
starts it running

Task function
completes

Non-preemptive Dynamic Scheduler

Ready

Waiting

Running

Task function
completes

Scheduler Tick
ISR or other task
marks this task

as Ready

Scheduler
finds a
higher
priority

ready task

Scheduler selects
highest priority
ready task and
starts it running

Preemptive Dynamic Scheduler

Figure 11.4 Task states and transitions for different schedulers.

CHAPTER 11 / DESIGNING RESPONSIVE AND REAL-TIME SYSTEMS 275

Allowing tasks to preempt each other reduces response time and simplifies application de-
sign. With preemption, each task need not be built with a run-to-completion structure. In-
stead, the task can yield the processor to other tasks, or it can be preempted by a higher-
priority task with more urgent processing. For example, our task can tell the scheduler
“I don’t have anything else to do for the next 10 ms, so you can run a different task.” The
scheduler then will save the state of this task, and swap in the state of the next highest pri-
ority task which is ready to run. This introduces another way to move from running to wait-
ing, as well as a way to move from running to ready. We examine these in detail next.

11.4.2 Transitions between States

We now examine the ways in which a task can move between the various states. These
rules govern how the system behaves, and therefore set some ground rules for how we
should design our system.

� The transition from ready to running:
▫ In a non-preemptive system, when the scheduler is ready to run a task, it se-

lects the highest priority ready task and moves it to the running state, typically
by calling it as a subroutine (as there is no context to restore).

▫ In a preemptive system, when the kernel is ready to run a task, it selects the
highest priority ready task and moves it to the running state by restoring its
context to the processor.

� The transition from running to waiting:
▫ In a non-preemptive system, the only way a task can move from running to

waiting is if it completes (returns from the task function). At this point there is
no more execution context for the task (return addresses, automatic variables),
so there is no data to save or restore.

▫ In a preemptive system, the task can yield the processor.9 For example, it can
request a delay (“Hey, RTOS! Wake me up in at least 10 ms!”), or it can wait
or pend on an event (“Hey, RTOS! Wake me up when I get a message in my
mailbox called foo!”). This makes application programming much easier, as
mentioned before. At this point there still is execution context, so the kernel
must save it for later restoration.

� The transition from waiting to ready:
▫ In a non-preemptive system such as the RTC scheduler above, the timer tick

ISR moves the task by setting the run flag. Alternatively, another task can set
the run flag to request for this task to run.

9 What happens if the task function finishes executing depends on the RTOS. The task could move to the wait-
ing state, or to a terminated state.

276 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

▫ In a preemptive system, the kernel is notified that some event has occurred.
For example, time delay has expired or a task has sent a message to the mail-
box called foo. The kernel knows which task is waiting for this event, so it
moves that particular task from the waiting state to the ready state.

� The transition from running to ready:
▫ In a non-preemptive system this transition does not exist, as a task cannot be

preempted.
▫ In a preemptive system, when the kernel determines a higher priority task is

ready to run, it will save the context of the currently running task, and move
that task to the ready state.

11.4.3 Context Switching for Preemptive Systems

In preemptive systems, some of these state transitions require the scheduler to save a task’s
execution context and restore another task’s context to ensure programs execute correctly.
This is called context switching and involves accessing the processor’s general-purpose
registers.

Figure 11.5 shows an example of the execution context for an RL78 family system as
it is executing task A in a system with two tasks (A and B). The CPU uses the program
counter PC to fetch the next instruction to execute, and the stack pointer to access the top
of the task’s stack. The CPU’s general purpose registers are used to hold the program’s data
and intermediate computation results. The PSW holds status bits and control bits.

In order to perform a context switch from task A to task B correctly, we must first copy
all of this task-specific processor register information to a storage location (e.g., task con-
trol block (TCB) A). This is shown in Figure 11.6.

Second, we must copy all of the data from TCB B into the CPU’s registers. This oper-
ation is shown in Figure 11.7. Now the CPU will be able to resume execution of task B
where it left off.

11.5 EXAMPLES OF SCHEDULERS

11.5.1 A Nonpreemptive Dynamic Scheduler

We will now examine a flexible nonpreemptive scheduler for periodic and aperiodic tasks.
We call it the RTC (run-to-completion) scheduler. This simple tick-based scheduler is quite
flexible and offers the various benefits:

� We can configure the system to run each task with a given period (e.g., every
40 ms) measured in time ticks. This simplifies the creation of multi-rate systems.

CHAPTER 11 / DESIGNING RESPONSIVE AND REAL-TIME SYSTEMS 277

� We can define task priorities, allowing us to design the system’s response (which
tasks are executed earlier) when there are multiple tasks ready to run.

� We can selectively enable and disable tasks.

This scheduler has three fundamental parts.

� Task Table: This table holds information on each task, including:
▫ The address of the task’s root function.
▫ The period with which the task should run (e.g., 10 ticks).

AX BC DE HL

PC SP PSW CS/ES

CPU

Memory
0xFFFFF

0x00000

global data

heap

Instructions

Task A

Task B

Task B Stack

Task A Stack

Figure 11.5 Example execution context when executing task A.

278 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

▫ The time delay until the next time the task should run (measured in ticks).
▫ A flag indicating whether the task is ready to run.

� Tick ISR: Once per time tick (say each 1 millisecond) a hardware timer triggers
an interrupt. The interrupt service routine decrements the time delay (timer) until
the next run. If this reaches zero, then the task is ready to release, so the ISR sets
its run flag.

� Task Dispatcher: The other part of the scheduler is what actually runs the tasks. It
is simply an infinite loop which examines each task’s run flag. If it finds a task with

AX BC DE HL

PC SP PSW CS/ES

CPU

Memory
0xFFFFF

0x00000

global data

heap

Instructions

Task A

Task B

Task B Stack

Task A Stack

AX BC DE HL

PC SP PSW CS/ES

TCB A

Figure 11.6 Saving task A’s context from the CPU registers into task control block for task A.

CHAPTER 11 / DESIGNING RESPONSIVE AND REAL-TIME SYSTEMS 279

the run flag set to 1, the scheduler will clear the run flag back to 0, execute the
task, and then go back to examining the run flags (starting with the highest-
priority task in the table).

Figure 11.8 shows a simple example of how this works with three tasks. Task 1 becomes
active every twenty time intervals, and takes one time interval to complete. Task 2 is active
every ten time intervals, and takes two time intervals to complete. Task 3 becomes active
every five time intervals and takes one time interval to complete.

AX BC DE HL

PC SP PSW CS/ES

CPU

Memory
0xFFFFF

0x00000

global data

heap

Instructions

Task A

Task B

Task B Stack

Task A Stack

AX BC DE HL

PC SP PSW CS/ES

TCB B

Figure 11.7 Restoring task B’s context to the CPU.

280 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

Figure 11.8 Simple Run-to-Completion Dynamic Scheduling.

Priority Length Frequency

Task 1 2 1 20

Task 2 1 2 10

Task 3 3 1 5

Elapsed time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Task executed T3 T2 T3 T3 T2 T1 T3 T3

Time T1 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 20 19 18 17 16 15

Time T2 10 9 8 7 6 5 4 3 2 1 10 9 8 7 6 5 4 3 2 1 10 9 8 7 6 5

Time T3 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5

Run T1 W W R

Run T2 R R

Run T3 R W W R R W W W R R

R � Running on processor W � Ready and waiting for processor

Figure 11.9 Complex Run-to-Completion Dynamic Scheduling.

Priority Length Frequency

Task 1 2 1 20

Task 2 1 2 10

Task 3 3 1 5

Task 4 0 1 3

Elapsed time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Task executed T4 T3 T4 T4 T2 T4 T3 T4 T3 T4 T2 T4 T1 T4 T3

Time T1 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 20 19 18 17 16 15

Time T2 10 9 8 7 6 5 4 3 2 1 10 9 8 7 6 5 4 3 2 1 10 9 8 7 6 5

Time T3 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5

Time T4 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2

Run T1 W W W R

Run T2 R R

Run T3 R W W W R W R W W W W W R

Run T4 R R R R R R W R R

R � Running on processor W � Ready and waiting for processor

CHAPTER 11 / DESIGNING RESPONSIVE AND REAL-TIME SYSTEMS 281

If more than one task becomes ready simultaneously (as seen at elapsed time ten), the
higher priority task is serviced first. When the higher priority task finishes, the next highest
ready task is executed. This repeats until there are no ready tasks.

Another example of a run-to-completion dynamic scheduling with interrupts is shown
in Figure 11.9. A new task, Task 4, is added, which becomes active every three time inter-
vals and runs for one time interval. As shown in the figure, at time � 20, tasks T1, T2, T3 all
become active and T2 is run based on priority. At time � 21, task T4 becomes active and is
scheduled to run at time � 22. T1 runs at time � 23, but before T3 gets a chance to run,
T4 becomes active again and gains the processor. At time � 25, T3 misses a turn since
T3 becomes active again and the T3 is serviced as if it were active only once. This is an ex-
ample of an overload situation which leads to one of the tasks missing its turn.10

Figure 11.10 shows a complex overloaded example where the scheduler fails to service
every task that is ready.

10 We could use a counter rather than a flag for the run variable, to allow for processing backlogs. In this case
the ISR would increment run rather than set it, and the scheduler function would decrement it rather than clear
it. This could be useful in some situations, but it would complicate the analysis.

Figure 11.10 Overload Example of Run-to-Completion Dynamic Scheduling

Priority Length Frequency

Task 1 2 1 20

Task 2 1 2 10

Task 3 3 1 5

Task 4 0 2 3

Elapsed time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Task executed T4 T3 T4 T4 T2 T4 T4 T3 T4 T2 T4 T4 T1 T4 T3 T4

Time T1 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 20 19 18 17 16 15 14 13 12 11 10

Time T2 10 9 8 7 6 5 4 3 2 1 10 9 8 7 6 5 4 3 2 1 10 9 8 7 6 5 4 3 2 1 10

Time T3 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5

Time T4 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3

Run T1 W W W W W W R

Run T2 W R R W

Run T3 R W W W W W W W R W W W W W W W W W R W

Run T4 R R R W R R R W R R R R

R � Running on processor W � Ready and waiting for processor

282 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

11.5.1.1 Implementation

11.5.1.1.1 Task Table: A scheduler uses a table to store information on each task. Each task
has been assigned a timer value. A task becomes active at regular intervals based on this value.
This timer value is decremented each tick by the timer tick ISR. Once the timer value reaches
zero, the task becomes ready to run. To reset this value after it has reached zero, an initial
Timer Value variable is used to store the time at which the task has to be active. Two variables,
enabled and run, are used to signal when a task is enabled and when it is ready to run. Variables
enabled and run are used to indicate to the scheduler if a task is enabled and if it is ready to run.
The function pointer *task indicates to the scheduler which function to perform.

The task’s priority is defined by its position within this array. Entry 0 has the highest
priority; whenever the scheduler needs to find a task to run, it begins at entry 0 and then
works its way through the table.

The scheduler’s task table is defined as follows:

1. #define MAX_TASKS 10
2. #define NULL ((void *)0)
3. typedef struct {
4. int initialTimerValue;
5. int timer;
6. int run;
7. int enabled;
8. void (* task)(void);
9. } task_t;
10. task_t GBL_task_table[MAX_TASKS];

Before running the scheduler, the application must initialize the task table as follows:

1. void init_Task_Timers(void){
2. int i;
3. /* Initialize all tasks */
4. for(i = 0; i < MAX_TASKS; i++){
5. GBL_task_table[i].initialTimerValue = 0;
6. GBL_task_table[i].run = 0;
7. GBL_task_table[i].timer = 0;
8. GBL_task_table[i].enabled = 0;
9. GBL_task_table[i].task = NULL;
10. }
11. }

11.5.1.1.2 Managing Tasks: Once the initialization is completed, tasks must be added
to the task structure. The new tasks can be added before starting the scheduler or during the

CHAPTER 11 / DESIGNING RESPONSIVE AND REAL-TIME SYSTEMS 283

scheduler’s execution time. When adding a task, the following must be specified: the time
interval in which the task has to be active, its priority, and the function on which the task
has to operate. The following code shows how adding a task is added:

1. int Add_Task(void (*task)(void), int time, int priority){
2. /* Check for valid priority */
3. if(priority >= MAX_TASKS || priority < 0)
4. return 0;
5. /* Check to see if we are overwriting an already scheduled

task */
6. if(GBL_task_table[priority].task != NULL)
7. return 0;
8. /* Schedule the task */
9. GBL_task_table[priority].task = task;
10. GBL_task_table[priority].run = 0;
11. GBL_task_table[priority].timer = time;
12. GBL_task_table[priority].enabled = 1;
13. GBL_task_table[priority].initialTimerValue = time;
14. return 1;
15. }

We can remove an existing task:

1. void removeTask(void (* task)(void)){
2. int i;
3. for(i = 0; i < MAX_TASKS; i++){
4. if(GBL_task_table[i].task == task){
5. GBL_task_table[i].task = NULL;
6. GBL_task_table[i].timer = 0;
7. GBL_task_table[i].initialTimerValue = 0;
8. GBL_task_table[i].run = enabled = 0;
9. return;
10. }
11. }
12. }

We can also selectively enable or disable a task by changing its enabled flag:

1. void Enable_Task(int task_number){
2. GBL_task_table[task_number].enabled = 1;
3. }

284 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

4. void Disable_Task(int task_number){
5. GBL_task_table[task_number].enabled = 0;
6. }

Finally, we can change the period with which a task runs:

1. void Reschedule_Task(int task_number, int new_timer_val){
2. GBL_task_table[task_number].initialTimerValue =
3. new_timer_val;
4. GBL_task_table[task_number].timer = new_timer_val;
5. }

11.5.1.1.3 Tick Timer Configuration and ISR: A run-to-completion dynamic sched-
uler uses a timer to help determine when tasks are ready to run (are released). A timer is set
up to generate an interrupt at regular intervals, as explained in Chapter 9. Within the inter-
rupt service routine the timer value for each task is decremented. When the timer value
reaches zero, the task becomes ready to run.

1. void RTC_Tick_ISR(void){
2. int i;
3. for(i = 0; i < MAX_TASKS; i++){
4. if(GBL_task_table[i].task != NULL) &&
5. (GBL_task_table[i].enabled == 1) &&
6. (GBL_task_table[i].timer > 0))
7. {
8. if(––GBL_task_table[i].timer == 0){
9. GBL_task_table[i].run = 1;
10. GBL_task_table[i].timer =
11. GBL_task_table[i].initialTimerValue;
12. }
13. }
14. }
15. }

11.5.1.1.4 Scheduler: The scheduler looks for ready tasks starting at the top of the table
(highest priority task). It runs every ready task it finds, calling it as a function (in line 16).

1. void Run_RTC_Scheduler(void){
2. int i;
3. /* Loop forever */
4. while(1){

CHAPTER 11 / DESIGNING RESPONSIVE AND REAL-TIME SYSTEMS 285

5. /* Check each task */
6. for(i = 0; i < MAX_TASKS; i++){
7. /* check if valid task */
8. if(GBL_task_table[i].task != NULL){
9. /* check if enabled */
10. if(GBL_task_table[i].enabled == 1){
11. /* check if ready to run */
12. if(GBL_task_table[i].run == 1){
13. /* Reset the run flag */
14. GBL_task_table[i].run = 0;
15. /* Run the task */
16. GBL_task_table[i].task();
17. /* break out of loop to start at entry 0 */
18. break;
19. }
20. }
21. }
22. }
23. }
24. }

11.5.1.2 Example Application using RTC Scheduler

Let’s use the RTC scheduler to create a toy with red and green LEDs flashing at various fre-
quencies. The Toggle_Green_LED task inverts a green LED every 0.33 seconds, and the
Toggle_Red_LED task inverts a red LED every 0.25 seconds.

The tasks and the main program are shown below:

1. void Toggle_Green_LED(void){
2. if(GREEN_LED == LED_ON)
3. GREEN_LED = LED_OFF;
4. else
5. GREEN_LED = LED_ON;
6. }
7. void Toggle_Red_LED(void){
8. if(RED_LED == LED_ON)
9. RED_LED = LED_OFF;
10. else
11. RED_LED = LED_ON;
12. }
13. void main(void){

286 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

14. ENABLE_LEDS;
15. init_Task_Timers();
16. Add_Task(Toggle_Green_LED,330,0);
17. Add_Task(Toggle_Red_LED,250,1);
18. Init_RTC_Scheduler();
19. Run_RTC_Scheduler();
20. }

11.5.2 A Preemptive Dynamic Scheduler

At first glance, a preemptive scheduler may seem to be the same as a non-preemptive sched-
uler, but with a little extra support for saving, switching, and restoring contexts. This appar-
ently small addition in fact has a major impact on how programs are structured and built. A
task no longer needs to run to completion. Instead, it is allowed to block and wait for an event
to occur. While that task blocks (waits), the scheduler is able to work on the next highest pri-
ority ready task. When the event occurs, the scheduler will move the task from the blocking
state to the ready state, so it can run again (when it becomes the highest priority ready task).
This opens the door to creating event-triggered multithreaded programs, which are much eas-
ier to develop, maintain, and enhance than the equivalent run-to-completion versions.

Since event support is so valuable to (and so tightly integrated with) preemptive sched-
ulers, we refer to real-time operating systems which include the scheduler, event support,
and additional features which build upon both. We will use examples from the RTOS

C/OS-II to illustrate the key concepts (Labrosse, 2002).

11.5.2.1 Yielding the Processor to Eliminate Busy Waiting

1. void Log_Data_To_Flash(void) {
2. Compute_Data(data);
3. Program_Flash(data);
4. while (!Flash_Done()) {
5. OSTimeDly(1);
6. // try again later
7. }
8. if (flash_result == ERROR) {
9. Handle_Flash_Error();
10. }
11. }

An RTOS typically provides a way for a task to explicitly yield control to another task, po-
tentially for a minimum time delay. For example, consider a task which writes data to flash

m

CHAPTER 11 / DESIGNING RESPONSIVE AND REAL-TIME SYSTEMS 287

memory, shown below. This operation could take a long time (3 ms for a page). Rather than
spin in busy-wait loop (line 4) until the flash programming is done (indicated by
Flash_Done() returning 1), we insert an OSTimeDly(1) call at line 5. This tells the RTOS
that the task would like to yield control of the processor, and furthermore would like to be
placed back into the ready queue after one scheduler tick has passed. At some point in the
future, the scheduler will restore this task’s context and resume its execution, at which
point the task will once again check to see if Flash_Done() is true or not. Eventually it will
be true and the task will then continue on with the code at line eight following the loop.

11.5.2.2 Yielding the Processor to Run Code in a Task Periodically

Often we wish to have a task run periodically. For example, let’s flash an LED as shown in
Figure 11.11.

Task1 LED

LED 5 ON

LED 5 OFF

LED 5 ON

LED 5 OFF

1. void Task1(void * data)
2. {
3. char state = 0;
4. for (;;)
5. {
6. RED_LED = state;
7. state = 1-state;

Figure 11.11 Sequence diagram of Task1 executing periodically and toggling an LED.

288 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

8. OSTimeDly(MSEC_TO_TICKS(TASK1_PERIOD_MSEC));
9. }
10. }

In this function an infinite loop will run forever, toggling RED_LED at line 6. The function
will stop once per iteration as it yields control of the processor with the OSTimeDly() call
at line 8.

11.5.2.3 Signaling another Task to Run

We can generate scheduling events from more than just time delays. For example, we may
want task A to be able to signal task B that it should resume running. One way to do this is
with a semaphore, a common RTOS communication mechanism.

Task1Switch Task2 LED

Switch is pressed
Post Run_Sem

LED 5 ON

Switch is pressed
Post Run_Sem

LED 5 OFF

Switch is pressed
Post Run_Sem

LED 5 ON

Switch is pressed
Post Run_Sem

LED 5 ON

Figure 11.12 Sequence diagram of Task1 triggering Task2 with semaphore.

CHAPTER 11 / DESIGNING RESPONSIVE AND REAL-TIME SYSTEMS 289

Figure 11.12 shows the desired system behavior. We would like Task1 to run periodically.
Each time it runs it should check to see if switch S1 is pressed. If it is, it should signal
Task2 by using the semaphore Run_Sem. Task2 will wait for the semaphore Run_Sem to
be signaled. When it is, then Task2 can run, toggling the LED and waiting for the next sem-
aphore signaling.

Details of the code are shown below. Note that the semaphore needs to be created and
initialized by the RTOS, as shown in line 3. Lines 4 through 6 handle error conditions.

1. OS_EVENT * Run_Sem;
2.
3. void TaskStartup() {
4. . . .
5. Run_Sem = OSSemCreate(0);
6. if (!Run_Sem) {
7. // error handling
8. }
9. }
10. void Task1(void * data)
11. {
12. char state = 0;
13. for (;;)
14. {
15. if (!S1) {
16. OSSemPost(Run_Sem); // signal the event has happened
17. }
18. OSTimeDly(MSEC_TO_TICKS(TASK1_PERIOD_MSEC));
19. }
20. }
21. void Task2(void*data)
22. {
23. char state = 0;
24. INT8U err = OS_NO_ERR;
25. for (;;)
26. {
27. OSSemPend(Run_Sem, TIMEOUT_NEVER, &err); // await event
28. if (err == OS_NO_ERR) { // We got the semaphore
29. YLW_LED = state;
30. state = 1 - state;
31. }
32. }
33. }

290 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

Note that semaphores are also commonly used to protect shared resources by providing
mutually exclusive access to them. We will investigate this in Section 11.6.4.3.

11.5.2.4 Sending Data to another Task

A task may need to send data (in addition to an event notification) to another task. RTOSs
typically provide mailboxes and message queues to do this. A mailbox holds one item of
data, while a queue can buffer multiple items of data.

The desired system behavior is almost the same as the previous example. We would
like Task1 to run periodically. Each time it runs it should check to see if switch S1 is
pressed. If it is, it should signal Task2 by sending a message SWITCH1_PRESSED to the
Switch1_Mbox mailbox. Task2 will wait for the mailbox Switch1_Mbox to be signaled.
When it is, then Task2 can run, toggling the LED and waiting for the next message in the
mailbox.

Details of the code are shown below. Note that the mailbox needs to be created and ini-
tialized by the RTOS, as shown in line 5. Lines 6 through 8 handle error conditions.

1. OS_EVENT * Switch1_Mbox;
2. …
3. void TaskStartup() {
4. …
5. Switch1_Mbox = OSMboxCreate(NULL);
6. if (!Switch1_Mbox) {
7. // error handling
8. }
9. …
10. }
11. void Task1(void * data)
12. {
13. char state = 0;
14. for (;;)
15. {
16. if (!S1) { // if switch 1 is pressed, send a message
via mbox
17. OSMboxPost(Switch1_Mbox, (void *) SWITCH1_PRESSED);
18. }
19. OSTimeDly(MSEC_TO_TICKS(TASK1_PERIOD_MSEC));
20. }
21. }
22. void Task2(void * data)
23. {

CHAPTER 11 / DESIGNING RESPONSIVE AND REAL-TIME SYSTEMS 291

24. char state = 0;
25. INT8U err = OS_NO_ERR;
26. INT16U message;
27.
28. YLW_LED = state;
29. for (;;)
30. {
31. message = (INT16U) OSMboxPend(Switch1_Mbox, 0, &err);
32. if (err == OS_NO_ERR) { // got a message
33. if (message == SWITCH1_PRESSED) {
34. YLW_LED = state;
35. state = 1 - state;
36. } else {
37. // different message received
38. // so do something else
39. }
40. } else {
41. // handle the error ...
42. }
43. }
44. }

11.6 SHARING DATA SAFELY

Preemption among tasks introduces a vulnerability to data race conditions. Now a task can
be considered to be as bug-prone and difficult to debug as an ISR! The system can fail in
new ways when:

� Multiple tasks or ISRs share data,11 or
� Multiple instances of a function can execute concurrently.

In order to prevent these failures we need to be careful when designing our system.

11 Hardware registers which change outside of the program’s control also introduce problems but we do not dis-
cuss them further here.

292 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

11.6.1 Data Shared Objects

If a data object is accessed by code which can be interrupted (is not atomic), then there is a
risk of data corruption. Atomic code is the smallest part of a program that executes without
interruption. Generally a single machine instruction is atomic,12 but sequences of instruc-
tions are not atomic unless interrupts are disabled.

Consider an example where task A starts modifying object O. Task B preempts it be-
fore it finishes. At this point in time object O is corrupted, as it is only partially updated. If
task B needs to read or write O, the computation results will be incorrect and the system
will likely fail.

1. unsigned time_minutes, time_seconds;
2. void task1 (void){
3. time_seconds++;
4. if(time_seconds >= 60){
5. time_minutes++;
6. time_seconds = 0;
7. }
8. }
9. void task2 (void){
10. unsigned elapsed_sec;
11. elapsed_seconds = time_minutes * 60 + time_seconds;
12. }

Here is a more specific example. Our shared object is a pair of variables which measure the
current time in minutes and seconds. Task1 runs once per second to increment the seconds,
and possibly the minutes as well. Task2 calculates how many total seconds have elapsed
since time zero. There are data races possible:

� If task1 is preempted between lines 4 and 5 or lines 5 and 6, then when task2 runs
it will only have a partially updated version of the current time, and elapsed sec-
onds will be incorrect.

� If task2 is preempted during line 11, then it is possible that time_minutes is read
before task1 updates it and time_seconds is read after task1 updates it. Again, this
leads to a corrupted elapsed_seconds value.

12 Some instruction sets have long instructions (e.g. string copy, block move) which can be interrupted, in
which case those instructions are not atomic.

CHAPTER 11 / DESIGNING RESPONSIVE AND REAL-TIME SYSTEMS 293

11.6.2 Function Reentrancy

Another type of shared data problem comes with the use of non-reentrant functions. In this
case, the problem arises from multiple instances of the same function accessing the same
object. Consider the following example:

1. void task1 (){
2.
3. swap(&x, &y);
4.
5. }
6. void task2 (){
7.
8. swap(&p, &q);
9.
10. }
11. int Temp;
12. void swap (*i, *j){
13. Temp = *j;
14. *j = *i;
15. *i = Temp;
16. }

Suppose task1 is running and calls the swap function. After line 13 is executed, task2 be-
comes ready. If task2 has a higher priority, task1 is suspended and task2 is serviced. Later,
task1 resumes to line 14. Since Temp is a shared variable, it is not stored in the TASK sub-
routine shared data stack. When task1 line 15 is executed, variable x (of task1 pointed by
variable pointer i) gets the wrong value. Such function executions should not be suspended
in between or shared by more than one task. Such functions are called non-reentrant. The
code which can have multiple simultaneous, interleaved, or nested invocations which will
not interfere with each other is called reentrant code. These types of code are important for
parallel processing, recursive functions or subroutines, and for interrupt handling. An ex-
ample of a reentrant code is as follows:

1. void swap (*i, *j){
2. static int Temp;
3. Temp = *j;
4. *j = *i;
5. *i = Temp;
6. }

294 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

Since the variable Temp is declared within the function, if any other task interrupts the exe-
cution of the swap function, the variable Temp will be stored in the corresponding task’s
stack and will be retrieved when the task resumes its function. In most cases, especially in
a multi-processing environment, the non-reentrant functions should be eliminated. A func-
tion can be checked for its reentrancy based on these three rules:

1. A reentrant function may not use variables in a non-atomic way unless they are
stored on the stack of the calling task or are the private variables of that task.

2. A reentrant function may not call other functions which are not reentrant.
3. A reentrant function may not use the hardware in a non-atomic way.

11.6.3 High-Level Languages and Atomicity

We can identify some but not all non-atomic operations by examining high-level source
code. Since the processor executes machine code rather than a high-level language such as
C or Java, we can’t identify all possible non-atomic operations just by examining the C
source code. Something may seem atomic in C but actually be implemented by multiple
machine instructions. We need to examine the assembly code to know for sure. Let’s ex-
amine the following function and determine whether it is atomic or not:

1. static int event_count;
2. void event_counter (void){
3. ++event_count;
4. }

Example 1 in assembly language (not RL78):

1. MOV.L #0000100CH, R4
2. MOV.L [R4], R5
3. ADD #1H, R5
4. MOV.L R5, [R4]
5. RTS

Consider example 1, and then apply the first rule. Does it use shared variable event_count
in an atomic way? The ++event_count operation is not atomic, and that single line of C
code is implemented with three lines of assembly code (lines two through four). The
processor loads R4 with a pointer to event_count, copies the value of event_count into reg-
ister R5, adds 1 to R5, and then stores it back into memory. Hence, example 1 is not
atomic and not reentrant.

CHAPTER 11 / DESIGNING RESPONSIVE AND REAL-TIME SYSTEMS 295

However, what if the processor instruction set supports in-place memory operations?
In that case, the assembly code could look like this:

Example 1 in assembly language, compiled for a different processor architecture:

1. MOV.L #0000100CH, A0
2. ADD #1H, [A0]
3. RTS

This code is atomic, since there is only one instruction needed to update the value of the
event count. Instruction 1 is only loading a pointer to the event count, so interrupting be-
tween 1 and 2 does not cause a problem. Hence it is reentrant.

The RL78 architecture supports modifications in memory, so the compiler can gener-
ate code which takes a single instruction to perform the increment. An example from a pre-
vious chapter is also atomic:

1. INCW N:int_count

Now consider a slightly different example:

1. void add_sum (int *j){
2. ++(*j);
3. DisplayString(LCDLINE1, Int_to_ascii(*j);
4. }

Even though line 2 in this example is not atomic, the variable * j is task’s private vari-
able, hence rule 1 is not breached. But consider line 3. Is the function DisplayString
reentrant? That depends on the code of DisplayString, which depends on the user.
Unless we are sure that the DisplayString function is reentrant (and do this recursively
for any functions which may be called directly or indirectly by DisplayString),
Example 2 is considered to be non-reentrant. So every time a user designs a function, he or
she needs to make sure the function is reentrant to avoid errors.

11.6.4 Shared-Data Solutions and Protection

In the previous section, we discussed the problems of using shared data in a RTOS envi-
ronment. In this section we shall study some methods to protect the shared data. The solu-
tions provided in this section may not be ideal for all applications. The user must judge
which solution may work best for the application.

296 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

11.6.4.1 Disable Interrupts

One of the easiest methods is to disable the interrupts during the critical section of the task.
Disabling the interrupts may not take more than one machine cycle to execute, but will in-
crease the worst case response time of all other code, including other interrupt service rou-
tines. Once the critical section, or shared variable section, of the code is executed, the in-
terrupt masking will be restored to its previous state (either enabled or disabled). The user
must be cautious while disabling or enabling interrupts, because if interrupts are disabled
for too long, the system may fail to meet the timing requirements. See Chapter 9, Using In-
terrupts with Peripherals, to find out how to disable and restore interrupt masking state. A
simple example of disabling interrupts is as follows:

1. #define TRUE 1
2. #define FALSE 0
3. static int error;
4. static int error_count;
5. void error_counter (){
6. if(error == TRUE){
7. SAVE_INT_STATE;
8. DISABLE_INTS;
9. error_count++;
10. error = FALSE;
11. RESTORE_INT_STATE;
12. }
13. }

Disabling and restoring the interrupt masking state requires only one or a few machine cy-
cles. Disabling interrupts must take place only at critical sections to avoid increasing re-
sponse time excessively. Also, while restoring the interrupt masking state the user must
keep in mind the need to enable only those interrupts that were active (enabled) before they
were disabled. Determining the interrupt masking status can be achieved by referring to the
interrupt mask register. The Interrupt mask register keeps track of which interrupts are
enabled and disabled.

11.6.4.2 Use a Lock

Another solution is to associate every shared variable with a lock variable, which is also
declared globally. If a function uses the shared variable, then it sets the lock variable, and
once it has finished process it resets the lock variable. Every function must test the lock
variable before accessing it. If the lock variable is already set, the task should inform the
scheduler to be rescheduled once the variable becomes available. Since only one variable

CHAPTER 11 / DESIGNING RESPONSIVE AND REAL-TIME SYSTEMS 297

has to be checked every time before accessing the data, using lock variables simplifies the
data structure and I/O devices access. Consider the following example for using a lock:

1. unsigned int var;
2. char lock_var;
3. void task_var (){
4. unsigned int sum;
5. if(lock_var == 0){
6. lock_var = 1;
7. var = var + sum;
8. lock_var = 0;
9. }
10. else {
11. /* message to scheduler to check var
12. and reschedule */
13. }
14. }

Since it takes more than one clock cycle to check whether a variable is available and use a
lock on it, the interrupts have to be disabled. Once again when the lock has to be released,
the interrupts should be disabled since locking and releasing the variable is a critical part of
the code. Interrupts must be enabled whenever possible to lower the interrupt service re-
sponse time. If the variable is not available, the scheduler is informed about the lock and
the task goes into a waiting state.

Microprocessors such as the Renesas RX support Bit Test and Set instructions can per-
form a test and set in one atomic machine instruction, and therefore do not require an in-
terrupt disable/enable lock around semaphore usage.

The challenge with this approach is determining what to do in lines 11 and 12 if there
is no scheduler support. There may be no easy way to tell the scheduler to reschedule this
task when the lock variable becomes available again.

11.6.4.3 RTOS-Provided Semaphore

Most operating systems provide locks to shared variables through the use of semaphores.
A semaphore is a mechanism that uses most of the multitasking kernels to protect shared
data and to synchronize two tasks. A semaphore is very much similar to the variable lock
process explained in the Section 12.4.3. The main difference is that the OS takes care of
initializing and handling the locks, so the implementation is much more likely to be correct
than if you try to create your own lock.

There are two types of semaphores—binary semaphores and counting semaphores. Bi-
nary semaphores take two values, 0 or 1. A counting semaphore takes a value between

298 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

0 and 2N � 1, where N is the number of bits used for the semaphore. In this book we con-
sider only the binary semaphore. A semaphore usually has three tasks: initialization/create,
wait, and signal.

A semaphore used for protecting a resource is initialized with the value 1, to indicate the
resource is initially available. At this point no task is waiting for the semaphore. Once a task
requires a data, the task performs a wait operation on the semaphore. The OS checks the value
of the semaphore; for example, if the semaphore is available (semaphore value is non-zero),
the OS changes the value of the semaphore to zero and assigns the semaphore to the task. If the
semaphore value is zero during the wait operation, the task that requested the wait operation is
placed on the semaphore’s waiting list. Once the semaphore becomes available based on the
priority of the tasks waiting for it, the OS decides which task to assign to the semaphore.

A task can ask to wait on a semaphore, potentially specifying a time limit for waiting.
If the time expires, the RTOS returns an error code to the semaphore-seeking function for
the appropriate response. On the other hand, if the function has obtained the semaphore, it
can then complete its operation using the shared resource and perform a signal operation,
announcing that the semaphore is free. The OS checks if any other task is waiting for the
semaphore. If so, that task is notified that it has obtained the semaphore (without changing
the semaphore’s value). On the other hand, if no task is waiting for the semaphore, the sem-
aphore is incremented to a non-zero number. The wait operation is also referred to as Take
or Pend or P and signal operation is referred to as Release or Post or V. The following ex-
ample shows how wait and signal operations are performed in mC/OS-II.

The example below shows how the semaphore LCD_Sem is used to ensure only one
task can access the LCD at a time. The semaphore is initialized with a value of 1 (in line 4)
to indicate that the resource is available. Each task must obtain the semaphore through a
pend operation (lines 16 and 34) before using the LCD (lines 18 and 36). When the task is
done with the LCD, it must release the semaphore with a post operation (lines 19 and 37).

1. OS_EVENT * LCD_Sem;
2. void TaskStartup(void * data)
3. {
4. LCD_Sem = Ossemcreate(1);
5. if (!LCD_Sem) {
6. // handle error
7. }
8. }
9. void Task1(void * data)
10. {
11. char state = 0, * p;
12. unsigned counter = 0;
13. INT8U err = OS_NO_ERR;
14. for (;;)
15. {

CHAPTER 11 / DESIGNING RESPONSIVE AND REAL-TIME SYSTEMS 299

16. OSSemPend(LCD_Sem, 10000, &err); // wait to get LCD
17. if (err == OS_NO_ERR) {
18. LCD_Update(data_1);
19. err = OSSemPost(LCD_Sem);
20. } else {
21. // handle LCD semaphore time-out
22. }
23. OSTimeDly(MSEC_TO_TICKS(TASK1_PERIOD_MSEC));
24. }
25. }
26. void Task3b(void * data)
27. {
28. char state = 0, * p;
29. unsigned counter = 0;
30. INT8U err = OS_NO_ERR;
31.
32. for (;;)
33. {
34. OSSemPend(LCD_Sem, 10000, &err); // wait to get LCD
35. if (err == OS_NO_ERR) {
36. LCD_Update(data_3);
37. err = OSSemPost(LCD_Sem);
38. } else {
39. // handle LCD semaphore time-out
40. }
41. OSTimeDly(MSEC_TO_TICKS(TASK3_PERIOD_MSEC));
42. }
43. }

11.6.4.4 RTOS-Provided Messages

We have seen that an RTOS may provide other mechanisms besides semaphores for allow-
ing tasks to communicate, such as message queues and mailboxes. It may be possible to
structure your program to use messages to pass information rather than sharing data ob-
jects directly. We leave further discussion of this approach to the many RTOS-oriented
books and articles already available.

11.6.4.5 Disable Task Switching

If no other method seems to work, one unattractive option is to disable the scheduler. If the
scheduler is disabled, the task switching does not take place and the critical sections or
shared data can be protected by other tasks. This method is counter-productive; disabling

300 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

the scheduler increases response times and makes analysis much more difficult. This is
considered bad practice and must be properly justified; hence consider this method as a last
resort.

11.7 ANALYSIS OF RESPONSE TIME AND SCHEDULABILITY

So far in this chapter we have seen how allowing (1) dynamic scheduling and (2) preemp-
tion of tasks improves a system’s responsiveness. In this section we will introduce the ba-
sic analytical methods which enable us to predict the timing behavior of the resulting real-
time systems accurately. There is an abundance of research papers on real-time scheduling
theory; two survey papers stand out for their clarity and context and should be consulted as
starting points (Audsley, Burns, Davis, Tindell, & Wellings, 1995; Sha, et al., 2004).

We are mainly concerned with two aspects of a real-time system’s behavior:

� How long will it take the processor to finish executing all the instructions of a par-
ticular task, given that other tasks may disrupt this timing? This is called the re-
sponse time.

� If each task has a deadline, will the system always meet all deadlines, even un-
der the worst case situation? A system which will always meet all deadlines is
called schedulable. A feasibility test will let us calculate if the system is
schedulable or not.

11.7.1 Assumptions and Task Model

We model the computational workload according to the following assumptions and restric-
tions. Basic fixed-priority real-time scheduling analysis begins with this mathematical
model:

� We have a single CPU.
� The workload consists of n tasks . Each task releases a series of jobs.
� Tasks release jobs periodically at the beginning of their period Ti and the deadline

for a job is at the end of the period.
� When a job is released, it is ready to run. We would like for the job to complete

before its deadline. Hard real-time jobs must meet their deadlines, while soft
real-time jobs should meet most of their deadlines.

� No task is allowed to suspend itself.
� A task can be preempted at any time. This means this model does not apply to the

non-preemptive schedulers we examined earlier.
� The worst-case execution time of each job is Ci. Determining this value is non-

Ti

CHAPTER 11 / DESIGNING RESPONSIVE AND REAL-TIME SYSTEMS 301

trivial because it depends on both software (the control flow may be dependent on
the input data) and hardware (pipelining, caches, dynamic instruction execution).
Instead, people attempt to estimate a tight bound which is reasonably close to the
actual number but not smaller (which would be unsafe).

� Overhead such as scheduler activity and context switches take no time.
� Tasks are independent. They do not communicate with each other in a way

which could make one wait for another, and they do not have any precedence
relationships.

One aspect of the workload to consider is the utilization U, which is the fraction of the
processor’s time which is needed to perform all the processing of the tasks. Utilization is
calculated as the sum of the each individual task’s utilization. A task’s utilization is the ra-
tio of its computation time divided by the period of the task (how frequently the computa-
tion is needed):

11.7.2 Fixed Task Priority

We can now examine different scheduling approaches using this foundation as a starting
point. One critical question which we haven’t answered yet is how do we assign priori-
ties? We can assign a fixed priority to each task, or allow a task’s priority to vary. The pros
and cons for these approaches are discussed in detail elsewhere (Buttazzo, 2005). We first
examine fixed-priority assignments.

11.7.2.1 Rate Monotonic Priority Assignment—RMPA

The first fixed-priority approach we examine gives higher priorities to tasks with higher
rates (execution frequencies). One very nice characteristic of RMPA is that it is optimal—
given the above assumptions listed above, there is no other task priority assignment ap-
proach which makes a system schedulable if it is not schedulable with RMPA.

Another nice characteristic of RMPA is that for some workloads it is very easy to de-
termine if the workload is definitely schedulable. The Least Upper Bound (LUB) test
compares the utilization of the resulting workload against a function based on the number
of tasks.

U � a
n

i�1

Ci

Ti
� n121

n � 1 2 � LUB

U � a
n

i�1
Ui � a

n

i�1

Ci

Ti

302 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

13 Researchers studying a large number of random task sets found that the average real feasible utilization is
about 0.88. However, this is just an average. Some task sets with 0.693 � U � 0.88 were not schedulable,
while some with 0.88 � U � 1 were schedulable.

� If U is less than or equal to the LUB, then the system is definitely schedulable. The
LUB starts out at 1. As n grows, the LUB approaches 0.693. This means that any
workload with RMPA and meeting the above criteria is schedulable.

� If U is greater than the LUB, then this test is inconclusive. The workload may or
may not be schedulable with RMPA. We will need to use a different test to deter-
mine schedulability.13

1

0.5

0
0 5 1510 20

Number of tasks n

U
ti

liz
at

io
n

Figure 11.13 Least Upper Bound for RMPA as a function of the number of tasks n.

Figure 11.13 plots the rate monotonic least upper bound as a function of the number of
tasks n. The area below the curve represents workloads which are always schedulable with
RMPA. For the area above the curve, the test is inconclusive.

EXAMPLE 1

TABLE 11.1 Sample Workload

TASK EXECUTION TIME C PERIOD T PRIORITY WITH RMPA

t1 1 4 High

t2 2 6 Medium

t3 1 13 Low

CHAPTER 11 / DESIGNING RESPONSIVE AND REAL-TIME SYSTEMS 303

Let’s see how this works for a system with three tasks, as shown in Table 11.1. We first
compute the utilization of the workload:

We compute the RM LUB for n � 3 tasks:

Since U � LUB, we know the system is schedulable and will meet all its deadlines.
Let’s see what happens if task takes three instead of one time unit to execute.

LUB � 3121
3 � 1 2 � 0.780

t3

U � a
n

i�1
Ui � a

n

i�1

Ci

Ti
�

1

4
�

2

6
�

1

13
� 0.660

TABLE 11.2 Sample Workload with Longer Task Three

TASK EXECUTION TIME C PERIOD T PRIORITY WITH RMPA

t1 1 4 High

t2 2 6 Medium

t3 3 13 Low

Let’s see how this works for a system with three tasks, as shown in Table 11.2. We first
compute the utilization of the workload:

We use the same RM LUB as we still have n � 3 tasks:

Since U � LUB, we do not know if the system is schedulable using the LUB test. We will
learn about Response Time Analysis in Section 11.7.3 and it will enable us to determine
schedulability.

11.7.2.2 Rate Monotonic Priority Assignment with Harmonic Periods

If we are able to adjust task periods, we can make RMPA systems schedulable up to uti-
lization of 1. The trick is to make task periods harmonic: a task’s period must be an exact
integer multiple of the next shorter period. We can only shorten the period of a task to make

LUB � 3121
3 � 1 2 � 0.780

U � a
n

i�1
Ui � a

n

i�1

Ci

Ti
�

1

4
�

2

6
�

3

13
� 0.814

304 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

it harmonic, as increasing it would violate the original deadline. The challenge is that as we
shorten a task’s period, we increase the processor utilization for that task. We need to keep
utilization at or below 1 to keep the system schedulable.

EXAMPLE 2

TABLE 11.3 Sample Workload with Longer Task Three and Harmonic Periods

ORIGINAL
FIRST HARMONIC
PERIOD ATTEMPT

SECOND HARMONIC
PERIOD ATTEMPT

TASK
EXECUTION

TIME C
PERIOD

T UTILIZATION
MODIFIED
PERIOD T UTILIZATION

MODIFIED
PERIOD T UTILIZATION

t1 1 4 0.250 4 0.250 3 0.333

t2 2 6 0.333 4 0.500 6 0.333

t3 3 13 0.231 8 0.375 12 0.231

Total 0.814 1.125 0.897

Schedulable Maybe No Yes

Our first attempt at period modification lowers the period of task two to four time units, and
that of task three to eight time units. The resulting utilization of 1.125 is greater than 1, so
the system is not schedulable. Our second attempt lowers the periods of tasks one and
three, with a resulting utilization of 0.897 so the system is now schedulable.

11.7.2.3 Deadline Monotonic Priority Assignment—DMPA

One constraint given above is that a task’s deadline Di must equal its period Ti. If we allow
Di � Ti then RMPA is no longer optimal. Instead, assigning higher priorities to tasks with
shorter deadlines results in optimal behavior. This is another common fixed-priority as-
signment approach.

11.7.3 Response Time Analysis

We can analyze the response time (the maximum delay between a task’s release and com-
pletion) for a task set with any fixed priority assignment, and with deadlines which may be
shorter than task periods. The equation computes the worst-case response time Ri for task

CHAPTER 11 / DESIGNING RESPONSIVE AND REAL-TIME SYSTEMS 305

t1 as the sum of that task’s computation time Ci and the sum of all possible computation
from higher-priority tasks, as they will preempt t1 if they are released before t1 completes.
The tricky part of this equation is that if t1 is preempted, then it will take longer to com-
plete (Ri will grow), raising the possibility of more preemptions. So, the equation needs to
be repeated until Ri stops changing or it exceeds the deadline Di. Note that the square half
brackets signify the ceiling function, which returns the smallest integer which is not
smaller than the argument x.

EXAMPLE 3

Let’s evaluate the response time for the system of Table 11.3 from the previous example
(with non-harmonic periods). We will evaluate the response time for the lowest priority
task. We begin with a value of 0 for Ri.

The estimated response time for task three to complete begins at six time units and grows
until it reaches a fixed point at 10 time units. Since this is less than the deadline for task
three, we know the system is schedulable and will always meet its deadlines.

11.7.4 Loosening the Restrictions

The assumptions listed in the beginning of the section limit the range of real-time systems
which can be analyzed, so researchers have been busy removing them.

R3 � C3 � a
2

j�1
l 10

Tj
mCj � 3 � l 10

4
m1 � l 10

6
m2 � 3 � 3 � 4 � 10

R3 � C3 � a
2

j�1
l 9

Tj
mCj � 3 � l 9

4
m1 � l 9

6
m2 � 3 � 3 � 4 � 10

R3 � C3 � a
2

j�1
l 7

Tj
mCj � 3 � l 7

4
m1 � l 7

6
m2 � 3 � 2 � 4 � 9

R3 � C3 � a
2

j�1
l 6

Tj
mCj � 3 � l 6

4
m1 � l 6

6
m2 � 3 � 2 � 2 � 7

R3 � C3 � a
2

j�1
l Ri

Tj
mCj � 3 � l 0

4
m1 � l 0

6
m2 � 3 � 1 � 2 � 6

Ri � Ci � a
i�1

j�1
l Ri

Tj
mCj

<x =

306 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

11.7.4.1 Supporting Task Interactions

One assumption is that tasks cannot interact with each other. They cannot share resources
which could lead to blocking.

Tasks typically need to interact with each other. They may need to share a resource,
typically using a semaphore to provide mutually-exclusive resource use. This leads to a
possible situation called priority inversion. If a low priority task tL acquires a resource
and then is preempted by a higher priority task tH which also needs the resource, then tH

blocks and cannot proceed until tL gets to run and has released the resource. In effect, the
priorities are inverted so that tL has a higher priority than tH.

Priority inversion is prevented by changing when a task is allowed to lock a resource. Two
examples of such rules are the Priority Ceiling Protocol and the Stack Resource Protocol. The
response time analysis equation listed above can be modified to factor in blocking times.

11.7.4.2 Supporting Aperiodic Tasks

Another assumption is that each task runs with a fixed period Ti. This is quite restrictive,
but it is possible to support aperiodic tasks by finding the minimum time between task re-
leases (inter-task release time) and using this as the period Ti. This approach works but
overprovisions the system as the difference between minimum and average inter-task re-
lease times grows, limiting its usefulness. There are other approaches (e.g., polling servers)
which are beyond the scope of this text, but which are listed in the references section.

11.7.5 Dynamic Task Priority

Instead of assigning each task a fixed priority, it is possible to have a priority which
changes. We still use all of the assumptions in our model of Section 11.7.1. One simple ap-
proach is called Earliest Deadline First, which unsurprisingly runs the task with the earli-
est deadline first. This approach is optimal among preemptive scheduling approaches: if a
feasible schedule is possible, EDF will find it.

One nice characteristic of EDF is that it is easy to determine whether a system will be
schedulable. Another is that using EDF will result in a schedulable system if the total uti-
lization is no greater than 1. This simplifies system analysis significantly!

11.7.5.1 Supporting Task Interactions

Enabling tasks to share resources with dynamic task priorities is different from static task
priorities. With EDF, each job of a task is assigned a priority which indicates how soon its

U � a
n

i�1

Ci

Ti
� 1

CHAPTER 11 / DESIGNING RESPONSIVE AND REAL-TIME SYSTEMS 307

deadline is. Priority inversion can still occur, but now job priorities may change. Re-
searchers have developed approaches such as the Stack Resource Policy (SRP), Dynamic
Priority Inheritance, Dynamic Priority Ceiling, and Dynamic Deadline Modification.

Let’s look at one example—the Stack Resource Policy. SRP assigns a preemption level
to each task in addition to its priority. Each shared resource has a ceiling, which is the high-
est preemption level of any task which can lock this resource. The system is assigned a
ceiling which is the highest of all currently locked resource ceilings. These factors are used
to determine when a job can start executing. Specifically, a job cannot start executing if it
does not both (1) have the highest priority of all active tasks, and (2) have a preemption
level greater than the system ceiling.

SRP simplifies analysis of the system because it ensures that a job can only block be-
fore it starts running, but never after. In addition, the maximum blocking time is one criti-
cal section. These factors lead to a simple feasibility test for periodic and sporadic tasks.
For each task i, the sum of the utilizations of all tasks with greater preemption levels and
the blocking time fraction for this task must be no greater than one.

,

11.7.5.2 Supporting Aperiodic Tasks

Recall that our task model requires each task to be periodic. If a task’s period can vary, we
need to choose the minimum period and design the system according to this worst-case,
which can lead to an overbuilt system. As with fixed-priority systems, there are ways to re-
lax this limitation. For example, the Total Bandwidth Server (TBS) assigns deadlines for
aperiodic jobs so that their demand never exceeds a specified limit Us on the maximum al-
lowed processor utilization by sporadic tasks. The deadline dk which assigned depends on
the current time rk and the deadline dk-1 assigned for this task’s previous job. The deadline
is pushed farther out in time as the ratio of the execution time of the request Ck and accept-
able sporadic server utilization Us increases.

With this approach, we can guarantee that the entire system is schedulable with EDF if the
utilization from periodic tasks (Up) and the TBS (Us) is no greater than one.

11.7.6 Non-Preemptive Scheduling Approaches

All of the scheduling analysis we just examined depends on being able to preempt any task
at any time. Let’s consider scheduling when preemption is not possible. The processor

a
i

k�1

Ck

Tk
�

Bi

Ti
� 11 � i � n

dk � max(crk, dk�1) �
Ck

Us

�i

308 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

cannot meet the deadline for a task ti with deadline Di shorter than the duration of the
longest task tL plus the actual computation time Ci for our task of interest ti. This limits
the range of real-time systems for which non-preemptive scheduling is suitable to those
with deadlines which are longer than the longest task’s computation time. This is not a sig-
nificant limitation if we design our tasks so that they cannot block internally, and take no
longer than a certain time to execute. Many embedded systems use non-preemptive sched-
ulers due to their simplicity and limited memory requirements.

11.8 RECAP

In this chapter we have seen how the responsiveness of a program with multiple tasks de-
pends on the ordering of the tasks, their prioritization, and whether preemption can occur.
We have seen how the scheduler manages task state based on system behavior, and have
examined two types of schedulers. We have also seen that a preemptive scheduler is often
built into RTOS to enable event-based mechanisms. We have examined how to protect
shared data in a preemptive system. Finally, we have studied how to calculate the worst-
case response time and schedulability for some real-time systems.

11.9 REFERENCES

Audsley, N. C., Burns, A., Davis, R. I., Tindell, K. W., & Wellings, A. J.. Fixed Priority Pre-emptive Schedul-

ing: An Historical Perspective. Real-Time Systems, 8(3), (1995): 173–198.

Buttazzo, G. C., Rate Monotonic vs. EDF: Judgment Day. Real-Time Systems, 29, (2005): 5–26.

Labrosse, J., MicroC/OS II: The Real-Time Kernel, 2nd Ed. Lawrence, KS: Newnes (2002).

Renesas Electronics, RL78 Family User’s Manual: Software, USA: Renesas Electronics, 2011.

Sha, L., Abdelzhaer, T., Arzen, K.-E., Cervin, A., Baker, T., Burns, A., et al., Real Time Scheduling Theory: A

Historical Perspective. Real Time Systems, 28(2–3), (2004, November-December) 101–155.

11.10 EXERCISES

1. For some task sets, changing from static to dynamic task ordering in a scheduler
will provide a major response time improvement for the highest priority task, while
for other task sets it will not. Give an example of each and explain the difference.

2. For some task sets, adding preemption to a scheduler will provide a major re-
sponse time improvement for the highest priority task, while for other task sets it
will not. Give an example of each and explain the difference.

3. Write C code to implement run-to-completion dynamic scheduling without inter-
rupts to poll the following tasks:
a. If switch 1 is pressed toggle the RED LEDs.

CHAPTER 11 / DESIGNING RESPONSIVE AND REAL-TIME SYSTEMS 309

b. If switch 2 is pressed read the temperature value from the onboard temperature
sensor and display on LCD.

c. If switch 3 is pressed read the potentiometer value and display on the LCD.
d. If no switch is pressed toggle the GREEN LEDs.

4. Write an algorithm which implements the below functionality using run-to-
completion dynamic scheduling with interrupts:
a. Toggle RED LEDs every 0.5 seconds.
b. Toggle GREEN LEDs every 0.25 seconds.
c. Read temperature value from onboard temperature sensor and display on

LCD every 1.0 seconds.
d. Read potentiometer value and display on LCD every 2.5 seconds.

5. Write a C code to implement round-robin with interrupts algorithm to perform the
following tasks:
a. Toggle RED LEDs every 0.5 seconds.
b. Toggle GREEN LEDs every 0.25 seconds.
c. Read temperature value from onboard temperature sensor and display on

LCD every 1.0 seconds.
d. Read potentiometer value and display on LCD every 2.5 seconds.

6. Fill in the following table to show which tasks the processor will execute and
when, as well as scheduler table contents. Assume that timer tick interrupts occur
every 1 millisecond, all tasks take 1.2 milliseconds to complete, and initial Timer-
Value for tasks A, B, and C are 2, 4, and 5 respectively. Note that the entries in the
table in column labeled INITIAL VALUE show each variable’s value before the
timer tick interrupt occurs. This means that a task will run on the tick when its
timer reaches 0 (but show the value after the tick and after the ISR executes). As-
sume task A has the highest priority, followed by task B, and then C.

TASK
NAME

INITIAL
VALUE n n � 1 n � 2 n � 3 n � 4 n � 5 n � 6 n � 7 n � 8 n � 9 n � 10 n � 11 n � 12 n � 13

A timer 2

run 0

enabled 1

B timer 3

run 0

enabled 1

C timer 1

run 0

enabled 1

Activity —

310 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

7. Fill in the table in Exercise 6 if timer tick interrupts occur every 0.5 milliseconds
and all tasks take 1.25 milliseconds to complete.

8. Create a six-task workload which is not schedulable under preemptive RMPA, and
then modify the task periods so that it is schedulable. You are allowed to decrease
but not increase the periods. What is the worst-case response time for each of the
tasks?

TASK C T

t1

t2

t3

t4

t5

t6

TASK C T

t1

t2

t3

t4

9. Create a four-task workload which is not schedulable under preemptive RMPA,
but is schedulable under EDF. What is the worst-case response time for each of the
tasks?

311

12.1 LEARNING OBJECTIVES

This chapter deals with how to make a program run faster. In particular, it shows how to
find the slow parts of a program and address them. There are many guides to optimization
which provide a plethora of ways to improve code speed. The challenge is to know which
code to optimize. This chapter concentrates on finding the slow code and either removing
or accelerating it.

12.2 BASIC CONCEPTS

There are many reasons why an embedded program may need to run faster: a quicker re-
sponse, to free up time for using a more sophisticated control algorithm, to move to a slower
or less expensive processor, to save energy by letting the processor sleep longer, and so on.

However, an embedded system is built of many parts, any one of which could be limit-
ing performance. The challenge is to find out which part of the system is limiting perfor-
mance. It is similar to a detective story—there are many suspects, but who really did it?

� Was the architecture a bad fit for the work at hand?
� Is your algorithm to blame?
� Did you do a bad job coding up the algorithm?
� Did the person who coded up the free software you are using do a bad job?
� Is the compiler generating sloppy object code from your source code?
� Is the compiler configured appropriately?
� Are inefficient or extra library functions wasting time?
� Is the input data causing problems?
� Are communications with peripheral devices taking too much time?

Clearly there are many possible culprits, but we would like to find the biggest ones quickly
to maximize our benefits.

Optimizing for Program Speed

Chapter TwelveChapter Twelve

312 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

The real problem is that programmers have spent far too much time worrying
about efficiency in the wrong places and at the wrong times; premature
optimization is the root of all evil (or at least most of it) in programming.

—Donald Knuth

With this in mind, here is an overview of how to develop fast code quickly:

1. Create a reasonable system design.
2. Implement the system with reasonable implementation decisions. Good judgment

is critical here. However, don’t start optimizing too early.
3. Get the code working.
4. Evaluate the performance—if fast enough, then your work is done. If not, then re-

peat as needed:
a. Profile to find bottlenecks.
b. Refine design or implementation to remove or lessen them.

12.2.1 Correctness before Performance

Don’t try to optimize too early. Make a reasonable attempt to make good design and im-
plementation decisions early on, but understand that it is essentially impossible for puny
earthlings like us to create an optimal implementation without iterative development. So
start with a good implementation based on reasonable assumptions. This implementation
needs to be correct. If it isn’t correct, then fix it. Once it is correct it is time to examine the
performance to determine performance bottlenecks.

Certain critical system characteristics do need to be considered to create a good imple-
mentation. In particular, one must consider the MCU’s native word size, hardware support
for floating-point math, and any particularly slow operations (e.g., multiply, divide).

12.2.2 Reminder: Compilation is Not a One-to-One Translation

There are many possible correct assembly language versions of a single C language pro-
gram. The compiler will generally create a reasonably fast version, but it is by no means
the fastest. Part of your role in optimizing software is to understand if the compiler is gen-
erating assembly code which is good enough. This requires examining the assembly code
and using your judgment1 to make this decision. Examining the assembly code generated

1 Good judgment comes from experience. Experience comes from bad judgment.

CHAPTER 12 / OPTIMIZING FOR PROGRAM SPEED 313

by the compiler is a remarkably effective way to learn how to help the compiler generate
more efficient code.

12.3 AN EXAMPLE PROGRAM TO OPTIMIZE

In order to illustrate the long and winding road of optimizations, let’s consider a real pro-
gram. We need to determine the distance and bearing from an arbitrary position on the sur-
face of the earth to the nearest weather and sea state monitoring station.

The US government’s National Oceanographic and Atmospheric Administration
(NOAA) monitors weather and sea conditions near the US using a variety of sensor plat-
forms, such as buoy and fixed platforms. This information is used for weather forecasting
and other applications. NOAA’s National Data Buoy Center (http://www.ndbc.noaa.gov/
and http://www.ndbc.noaa.gov/cman.php) gathers information from many buoy-mounted
(and fixed) platforms and makes it available online. The locations of these platforms are to
be stored in the MCU’s flash ROM.

Finding the distance and bearing between two locations on the surface of the earth uses
spherical geometry. Locations are represented as latitude and longitude coordinates. We
use the spherical law of cosines to compute the distance in kilometers:

We compute the bearing (angle toward the location) in degrees as follows:

Further details are available online at http://www.movable-type.co.uk/scripts/latlong.html.
This is a mathematically intensive computation with many trigonometric functions, so we
expect many opportunities for optimization.

Let’s examine the relevant functions needed to do this work. The function Calc_
Distance calculates the distance between two points.

1. float Calc_Distance(PT_T * p1, const PT_T * p2) {
2. //calculates distance in kilometers between locations (represented

in degrees)
3. return acos(sin(p1->Lat * PI/180) * sin(p2->Lat * PI/180) +
4. cos(p1->Lat * PI/180) * cos(p2->Lat * PI/180)*
5. cos(p2->Lon * PI/180 - p1->Lon*PI/180)) * 6371;
6. }

sin(lon2 � lon1) * cos(lat2)) *
180
p

a � atan2(cos(lat1) * sin(lat2) � sin(lat1) * cos(lat2) * cos(lon2 � lon1),

d � acos(sin(lat1) * sin(lat2) � (cos(lat1) * cos(lat2) * cos(lon2 � lon1)

314 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

The function Calc_Bearing calculates the bearing from the first to the second point.

1. float Calc_Bearing(PT_T * p1, const PT_T * p2){
2. //calculates bearing in degrees between locations (represented in

degrees)
3. float angle = atan2(
4. sin(p1->Lon * PI/180 - p2->Lon * PI/180) * cos(p2->Lat * PI/180),
5. cos(p1->Lat * PI/180) * sin(p2->Lat * PI/180) -
6. sin(p1->Lat * PI/180) * cos(p2->Lat * PI/180)*
7. cos(p1->Lon * PI/180 - p2->Lon * PI/180)
8.) * 180/PI;
9. if (angle < 0.0)
10. angle += 360;
11. return angle;
12. }

The function Find_Nearest_Point calculates the distance to each point (in line 15) to find
the one closest to the current position. It keeps track of the closest point’s distance and in-
dex in lines 18–20.

1. void Find_Nearest_Point(float cur_pos_lat, float cur_pos_lon,
2. float * distance, float * bearing, char * * name) {
3. //cur_pos_lat and cur_pos_lon are in degrees
4. //distance is in kilometers
5. //bearing is in degrees
6. int i = 0, closest_i;
7. PT_T ref;
8. float d, b, closest_d = 1E10;
9. *distance = *bearing = NULL;
10. *name = NULL;
11. ref.Lat = cur_pos_lat;
12. ref.Lon = cur_pos_lon;
13. strcpy(ref.Name, “Reference”);
14. while (strcmp(points[i].Name, “END”)) {
15. d = Calc_Distance(&ref, &(points[i]));
16. b = Calc_Bearing(&ref, &(points[i]));
17. //if we found a closer point, remember it and display it
18. if (d<closest_d) {
19. closest_d = d;
20. closest_i = i;
21. }

CHAPTER 12 / OPTIMIZING FOR PROGRAM SPEED 315

22. i++;
23. }
24. d = Calc_Distance(&ref, &(points[closest_i]));
25. b = Calc_Bearing(&ref, &(points[closest_i]));
26. //return information to calling function about closest point
27. *distance = d;
28. *bearing = b;
29. *name = (char *) (points[closest_i].Name);
30. }

Note that there are various other functions (e.g., for initialization) in the program, but these
three do the bulk of the work. Our main function calls Find_Nearest_Point twice, with lo-
cations of Raleigh, NC, and San Francisco, CA.

We examine the default compiler setting for optimization, which turns out to be “Low
Optimization.” We change this to “High Optimization” and “Optimize for Speed” and
build the program. We download it to the MCU and run it. It takes 3.22 seconds to find the
closest of all the points for two different test cases. This means that each point’s compari-
son takes about 3.22 sec/(164 points * 2) � 9.82 ms, or roughly 314,000 clock cycles given
the clock speed of 32 MHz.

12.4 PROFILING—WHAT IS SLOW?

There must be many opportunities for optimization here, but where and how should we
start? We could waste a lot of time speeding up code which doesn’t really matter much to
the system’s overall performance.2 In order to avoid this, we want to figure out what parts
of the program take up most of its time. Optimizing those parts first will give us the
biggest payback on our development time. Profiling a program shows us where it spends
its time, and therefore where we should spend our time for optimization.

12.4.1 Mechanisms

There are three basic approaches to profiling a program.

1. We can sample the program counter periodically by interrupting the program to
see what it is doing by, and then looking up what function (or region, to general-
ize) contains that instruction address. This approach provides the biggest return on
development time effort.

2 You can avoid ten minutes of thinking by instead spending the whole day blindly hacking code.

316 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

2. We can modify each function in the program to record when it starts and finishes
executing. After the program runs we process the function execution time infor-
mation to calculate the profile. We don’t discuss this further, as it requires exten-
sive modification to the program (for each user function and library function).
Some compilers or code post-processing tools provide this support.

3. We can use hardware circuitry to extract an instruction address trace by moni-
tor the address bus as the program runs. The address trace can then be processed to
create the profile. We don’t discuss this further, as the address bus is generally in-
accessible for single-chip microcontrollers.

We will use the PC-sampling approach here for reasons of practicality. There are commer-
cial and open source profiling tools available, but we will create our own tool.

12.4.2 An Example PC-Sampling Profiler for the RL78

Let’s see how to build a PC-sampling profiler for the RL78.

12.4.2.1 Sampling the PC

First we need a way to sample the PC occasionally. During system initialization we con-
figure a timer array unit peripheral to generate interrupts at a frequency3 of 100 Hz. This in-
terrupt is handled at run time by the service routine shown below.

1. volatile unsigned int PC;
2. #pragma vector = INTTM00_vect
3. __interrupt void MD_INTTM00(void)
4. {
5. /* Start user code. Do not edit comment generated here */
6.
7. unsigned int s, e;
8. unsigned int i;
9.
10. if (!profiling_enabled)
11. return;
12.
13. profile_ticks++;
14.

3 This is an arbitrary frequency. A higher frequency increases resolution but also timing overhead. A lower fre-
quency reduces resolution and overhead.

CHAPTER 12 / OPTIMIZING FOR PROGRAM SPEED 317

15. //Extract low 16 bits of return address
16. __asm(" PUSH AX\n"
17. " MOVW AX, [SP+10]\n"
18. " MOVW PC_val_low, AX\n"
19. " POP AX\n");
20.
21. /* look up function in table and increment counter */
22. for (i = 0; i <> NumProfileRegions; i++) {
23. s = RegionTable[i].Start;
24. e = RegionTable[i].End;
25. if ((PC >= s) && (PC <>= e)) {
26. RegionCount[i]++;
27. return;
28. }
29. }
30. /* End user code. Do not edit comment generated here */
31. }

This ISR needs to retrieve the saved PC value from the stack. Figure 12.1 shows the stack
contents upon responding to an interrupt. The address of the next instruction to execute af-
ter completing this ISR is stored on the stack in three bytes: PC7–0, PC15–8, and
PC19–16. At the beginning of the ISR, they will be at addresses SP � 1, SP � 2 and
SP � 3. However, the ISR may push additional data onto the stack so we will need to

PC7–PC0

PC15–PC8

PC19–PC16

PSW

SP–4

SP–3

SP–2

SP–1

SPV

SPWSP–4

X

X

X

X

X

Interrupt and
BRK instruction
(4-byte stack)

Figure 12.1 Stack contents upon responding to an interrupt.

318 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

examine the assembly code generated by the compiler for our ISR before we can defini-
tively identify the offsets from SP. In our case there is additional data allocated on the stack
for local variables, so the high byte of the saved PC (PC19 � PC16) is located at SP � 12
and the low word (PC0 � PC7 and PC8 � PC15) is at SP � 10. The code at lines
16 through 19 in the listing copies the low word of the saved PC value into register AX and
then into local variable PC on the stack. It also saves and restores the previous value of
AX to ensure correctness.

12.4.2.2 Finding the Corresponding Code Region

TABLE 12.1 Region Address Information Table

REGION NAME START ADDRESS END ADDRESS COUNT

foo 0x00001234 0x00001267 0

bar 0x00001268 0x00001300 0

So now we have the saved PC, which shows us what instruction the processor will execute
after finishing this ISR. What program region (e.g., function) corresponds to that PC? Ide-
ally we would like a table of information such as in Table 12.1.

There are various ways to create such a table. One approach is to process the map file
created by the linker. The IAR Embedded Workbench for RL78 generates a map file in the
output directory (e.g., debug/your_project_name.map) which shows the size and location
of each function in a human-readable format. Functions are stored in one of three types of
code segment:

� CODE holds program code
� RCODE holds start-up and run-time library code
� XCODE holds code from functions declared with the attribute __far_func.

Here is an example entry from the map file:

CODE
Relative segment, address: 00001238 - 000013C8 (0x191 bytes),

align: 0
Segment part 11.
ENTRY ADDRESS REF BY
===== ======= ======
sim_motion 00001238 main (CG_main)
calls direct
CSTACK = 00000000 (000000A4)

————————————————————————————————————-

CHAPTER 12 / OPTIMIZING FOR PROGRAM SPEED 319

It shows that the function sim-motion starts at address 00001238 and ends at address
000013c8. We can use this information to create a region table entry for the function. We cre-
ate a type of structure called REGION_T to hold a region’s start address, end address, and la-
bel (to simplify debugging). The addresses are stored as unsigned ints (16 bits long) because
we wish to save space, and our target MCU’s program memory is located within the first
64 KB of the address space. This would need to be changed if we needed to store larger
addresses.

1. typedef struct {
2. unsigned int Start;
3. unsigned int End;
4. char Name[16];
5. } REGION_T;

We will use an awk script to extract function names and addresses and generate a C file
which holds two arrays, as shown in the listing below. Some toolchains offer tools for ex-
tracting symbols and their information from the object code. For example, gnu binutils pro-
vides nm and objdump.

The first array (RegionTable, lines 2–19 holds the start and end addresses of the func-
tions and their names. The ISR MD_INTTM00 accesses it in lines 21 and 22 from previ-
ous coding list. The array is declared as a const to allow the compiler to place it into ROM,
which is usually larger and less valuable than RAM for microcontrollers.

The second array (RegionCount, line 21) is an array of unsigned integers which count
the number of times the region was interrupted by the ISR. This array is initialized to all
zeros on start-up. The ISR increments the appropriate array entry in line 26. If we do not
find a corresponding region, then no region counter is incremented.

1. #include “region.h”
2. const REGION_T RegionTable[] = {
3. {0x00000A46, 0x00000A79, “AD_Init”}, //0
4. {0x00000A7A, 0x00000A83, “AD_Start”}, //1
5. {0x00000A84, 0x00000A87, “AD_ComparatorOn”}, //2
6. {0x00000A88, 0x00000A95, “MD_INTAD”}, //3
7. {0x00000A96, 0x00000AAF, “IT_Init”}, //4
8. {0x00000AB0, 0x00000ABC, “IT_Start”}, //5
9. {0x00000AD4, 0x00000AE8, “MD_INTIT”}, //6
10. {0x00000AE9, 0x00000B8F, “main”}, //7

(many lines deleted)

11. {0x00000A1D, 0x00000A45, “_matherr”}, //60
12. {0x00001606, 0x00001710, “sqrt”}, //61

320 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

13. {0x00001711, 0x0000185C, “__iar_Atan”}, //62
14. {0x0000185D, 0x00001907, “__iar_Dint”}, //63
15. {0x00001912, 0x00001964, “__iar_Dnorm”}, //64
16. {0x00001965, 0x00001B1D, “__iar_Dscale”}, //65
17. {0x00001B27, 0x00001C66, “__iar_Quad”}, //66
18. {0x00001C67, 0x00001DC2, “__iar_Sin”}, //67
19. };
20. const unsigned NumProfileRegions = 68;
21. volatile unsigned RegionCount[68];

We also have the ISR increment a variable (sample_count) in line 12 preceding to count
how many samples we’ve taken. We need this value to correctly calculate the profile if any
of our samples did not hit any regions in our table.

12.4.2.3 Modifications to the Build Process

Make Region
Table

Linker
Compiler &
Assembler

Source Files

profile.c

profile.h

region.h

region.c

Object Files
Executable

File

Map File

Figure 12.2 Modified build process includes dependency on map file.

Our build process is now more complicated, because the region table depends on the map
file, as shown in Figure 12.2. Note that the map file is automatically generated by the linker
to describe the contents of the executable file. Because of this we do not edit the map
file—our changes would have no effect, and may even introduce bugs into our profiler in
this case. The map file is not created until after the program is fully compiled and linked,
so we will need to rebuild the program several times. With suitable tools this build process
can be automated.

CHAPTER 12 / OPTIMIZING FOR PROGRAM SPEED 321

� We first build the program using a dummy region.c file, which contains an empty
region table. The resulting map file has the correct number of functions, but with
addresses which will probably change, so they are wrong.

� We run our tool to create the region table from the map file. The region table now
has the correct number of entries, but the addresses are wrong.

� We rebuild the program. The resulting map file has the correct (final) function
addresses.

� We run our tool to create the region table from the map file.
� We rebuild the program for the final time. The resulting executable program con-

tains a region table with correct address information for each function.

12.4.2.4 Analyzing Results

We can now analyze where the program spends most of its time. We simply find the region
with the largest number of profile hits and start looking at that region’s C and assembly
code. In doing this, we will keep in mind some critical ideas of optimization:

� Measure the performance.
� Avoid run-time work when possible.
� Look at the assembly code the compiler generated.

12.5 EXAMPLE: OPTIMIZING THE DISTANCE AND BEARING CALCULATION

12.5.1 First Measurement: 3220 ms

We are now ready to examine how our program spends its time. We recompile the program
with the profiling support described above and run it. We look at the execution profile and
find that these regions shown in Table 12.2 account for most of the time.

TABLE 12.2 Top Regions in Initial Execution Time Profile

COUNT REGION NAME TIME (%)

140 ?MOVE_LONG_L06 44%

46 ?WRKSEG_PUSH_L09 14%

40 ?F_DIV 12%

24 ?F_ADD 7%

22 ?F_MUL 7%

13 ?WRKSEG_POP_L09 4%

322 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

What is ?MOVE_LONG_L06? We didn’t call it explicitly, so it must be a library function
call added by the compiler. We use the debugger to insert a breakpoint in that function and
then examine call the function, call stack, or step out of the function to determine which
function calls it.4 It turns out that WRKSEG_POP_L09 calls it. Stepping out of
WRKSEG_POP_L09 leads us into F_MUL, which is a floating point multiply operation.
We see that F_MUL accounts for 7 percent of the time already, and related functions
F_DIV and F_ADD are also significant. WRKSEG_PUSH_L09 is also called by the other
floating point library functions.

12.5.2 First Optimization

There is a lot of time spent doing floating point math in software. Let’s examine our
source code to see how we can reduce the amount of floating point math. Line 16 in
Find_Nearest_Point calculates the bearing to each point using the function Calc_Bearing,
which uses a lot of floating point math and trigonometric functions. Stepping back
and looking at the bigger picture, we don’t really need to know the bearing to every
point, just the closest one. And that bearing is calculated in line 25, so we can delete
line 16.

Looking at the code further we see a similar recomputation. We recalculate the dis-
tance to the closest point in line 24. This distance is already stored in closest_d (assigned
in line 19), so we could delete line 24 and replace line 27 with distance � closest_d. We
expect that this optimization will give a minor improvement, since it reduces the number of
distance calculations by only one. But since it is very easy to implement, we do it. We find
that the execution time has fallen to 143 ticks, primarily due to the elimination of most of
the Calc_Bearing calls.

12.5.3 Second Measurement: 1430 ms

Let’s look at the profile information to see if we should keep working on the floating
point math, or if something else is now the biggest problem. The top regions in the pro-
file table are shown in Table 12.3. It’s still the same functions, so let’s keep working in
the same direction.

4 Some profiling tools will identify the calling functions automatically, but our simple scheme here does not,
which forces us to use the debugger.

CHAPTER 12 / OPTIMIZING FOR PROGRAM SPEED 323

12.5.4 Second Optimization

The functions Calc_Distance and Calc_Bearing have many divisions of constants by con-
stants (e.g., PI/180). The compiler should be able to do these divisions at compile-time,
right? Let’s look at the assembly code for Calc_Distance and find out.

We don’t include the two pages of assembly code here, but there are six calls to F_DIV.
The C source code has six floating point divides, so it is obvious that the compiler isn’t
doing that possible optimization. Let’s do it by defining PI_DIV_180 to eliminate those
divides.

1. #define PI_DIV_180 (PI/180)

Strangely enough, this is enough to eliminate the divide calls. We do this optimization
everywhere we have the PI/180 division, then recompile and analyze the code.

Sometimes compilers are very careful when it comes to optimizations—the “dark cor-
ners” of the semantics of the C language probably allow our program to behave in a certain
way which would cause the optimized code to be incorrect. So sometimes we need to be
explicit to make sure the compiler can generate better code.

12.5.5 Third Measurement: 1300 ms

The execution time falls to 130 ticks with the distribution shown in Table 12.4.

12.5.6 Third Optimization

There is still quite a bit of floating-point math. Let’s look at what’s in Calc_Distance and
Calc_Bearing again. The second parameter to each function is a pointer to a “const”

TABLE 12.3 Execution Time Profile after First Optimization Pass

COUNT REGION NAME TIME (%)

52 ?MOVE_LONG_L06 36%

23 ?WRKSEG_PUSH_L09 16%

17 ?F_DIV 12%

11 ?F_MUL 8%

10 ?WRKSEG_POP_L09 7%

324 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

point—one stored in the array points. These points are defined at compile time and then
will not change again until we want to update the list. We could save quite a bit of time by
pre-computing in two ways:

� Storing a point’s latitude and longitude in radians rather than degrees, avoiding the
need to convert at run-time.

� Storing the derived trigonometric values. Calc_Distance and Calc_Bearing both
use the sine of latitude and cosine of latitude.

So we will modify the spreadsheet we used to create CMAN_coords.c to precompute these
values. We will also need to modify the type definition of PT_T to include the sine and co-
sine of the latitude. This actually simplifies the code quite a bit, as shown below.

2. float Calc_Distance(PT_T * p1, const PT_T * p2) {
3. //calculates distance in kilometers between locations

(represented in degrees)
4. return acos(p1->SinLat * p2->SinLat +
5. p1->CosLat * p2->CosLat * cos(p2->Lon - p1->Lon)) * 6371;
6. }

7. float Calc_Bearing(PT_T * p1, const PT_T * p2){
8. //calculates bearing in degrees between locations (represented

in degrees)
9. float angle = atan2(
10. sin(p1->Lon - p2->Lon) * p2->CosLat,
11. p1->CosLat * p2->SinLat -
12. p1->SinLat * p2->CosLat * cos(p1->Lon - p2->Lon)
13.) * 180/PI;

TABLE 12.4 Execution Time Profile after Second Optimization Pass

COUNT REGION NAME TIME (%)

57 ?MOVE_LONG_L06 44%

23 ?WRKSEG_PUSH_L09 18%

9 __finfws 7%

8 F_DIV 6%

6 F_ADD 5%

6 F_MUL 5%

CHAPTER 12 / OPTIMIZING FOR PROGRAM SPEED 325

14. if (angle < 0.0)
15. angle += 360;
16. return angle;
17. }

We will also modify the code in Find_Nearest_Point to convert the current location to ra-
dians and save the sine and cosine of latitude.

1. void Find_Nearest_Point(float cur_pos_lat, float cur_pos_lon, float *
distance, float * bearing,

2. char * * name) {
3. //cur_pos_lat and cur_pos_lon are in degrees
4. //distance is in kilometers
5. //bearing is in degrees
6.
7. int i = 0, closest_i;
8. PT_T ref;
9. float d, b, closest_d = 1E10;
10.
11. *distance = *bearing = NULL;
12. *name = NULL;
13.
14. ref.Lat = cur_pos_lat * PI_DIV_180;
15. ref.SinLat = sin(ref.Lat);
16. ref.CosLat = cos(ref.Lat);
17. ref.Lon = cur_pos_lon * PI_DIV_180;
18. strcpy(ref.Name, “Reference”);

12.5.7 Fourth Measurement: 600 ms

TABLE 12.5 Execution Time Profile after Third Optimization Pass

COUNT REGION NAME TIME (%)

21 ?0EMOVE_LONG_L06 35%

10 ?0EWRKSEG_PUSH_L09 17%

8 F_ADD 13%

6 F_DIV 10%

6 F_MUL 10%

326 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

Here we see that the execution time has fallen significantly (to 60 ticks), but still we have
the same functions dominating the total time. This means that the floating point math
should still be our focus.

12.5.8 Fourth Optimization

Looking at the problem some more shows us that most of the time is spent in functions
called by Calc_Distance. So we will focus on speeding it up.

In this case, we have over-specified the problem. Calc_Distance in line 4 below multi-
plies an intermediate result by 6371 to provide a return value which measures the distance
in kilometers. We don’t need to perform this unit conversion until we find the closest point,
at which we can take the intermediate result for that point and then multiply it to get
kilometers.

1. float Calc_Distance(PT_T * p1, const PT_T * p2) {
2. //calculates distance in kilometers between locations

(represented in degrees)
3. return acos(p1->SinLat * p2->SinLat +
4. p1->CosLat * p2->CosLat * cos(p2->Lon - p1->Lon)) * 6371;
5. }

So we could instead call the simplified function below to find the closest point, eliminating
NPoints-1 floating point multiplies.

1. float Calc_Distance_in_Unknown_Units(PT_T * p1, const PT_T * p2) {
2. //calculates distance in kilometers between locations (represented

in degrees)
3. return acos(p1->SinLat * p2->SinLat +
4. p1->CosLat * p2->CosLat * cos(p2->Lon - p1->Lon));
5. }

We can take this a step further. The arc cosine function is a decreasing function, as shown
in Figure 12.3. So we don’t really need to calculate the arc cosine to find the closest point.
Instead, we just need to find the point with the largest input (X value in Figure 12.3) to the
arc cosine, as that will result in the smallest output. That will give the smallest distance, as
it is just multiplied by a scaling constant to convert to kilometers.

The optimized version of Calc_Distance is renamed and shown below, with changes in
lines 3 and 4.

1. float Calc_Distance_Partially(PT_T * p1, const PT_T * p2) {
2. //calculates cosine of distance between locations

CHAPTER 12 / OPTIMIZING FOR PROGRAM SPEED 327

3. return p1->SinLat * p2->SinLat +
4. p1->CosLat * p2->CosLat * cos(p2->Lon - p1->Lon);
5. }

We need to change Find_Nearest point slightly. First, we need to change various aspects of
the code because acos increases as distance decreases—we want to find the largest inter-
mediate result.

� In line 9 we set the closest d value to 0.
� In line 23 we look for the largest value of d.

Finally, we need to compute the actual distance for the point.

� In line 33 we complete the calculation of the distance for the closest point.

1. void Find_Nearest_Point(float cur_pos_lat, float cur_pos_lon, float
* distance, float * bearing,
2. char * * name) {
3. //cur_pos_lat and cur_pos_lon are in degrees
4. //distance is in kilometers
5. //bearing is in degrees
6.
7. int i = 0, closest_i;
8. PT_T ref;

acos(X)

3.5

3

2.5

2

1.5

1

0.5

0

21 20.5 0 0.5 1

X

Figure 12.3 Arc Cosine function always decreases as X increases.

328 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

9. float d, b, closest_d = 0;
10.
11. *distance =* bearing = NULL;
12. *name = NULL;
13.
14. ref.Lat = cur_pos_lat * PI_DIV_180;
15. ref.SinLat = MYSIN(ref.Lat);
16. ref.CosLat = MYCOS(ref.Lat);
17. ref.Lon = cur_pos_lon * PI_DIV_180;
18. strcpy(ref.Name, “Reference”);
19.
20. while (strcmp(points[i].Name, “END”)) {
21. d = Calc_Distance_Partially(&ref, &(points[i]));
22. //if we found a closer point, remember it and display it
23. if (d > closest_d) {
24. closest_d = d;
25. closest_i = i;
26. }
27. i++;
28. }
29. b = Calc_Bearing(&ref, &(points[closest_i]));
30. //return information to calling function about closest point
31. *distance = acos(closest_d) * 6371;
32. *bearing = b;
33. *name = (char *) (points[closest_i].Name);
34. }

12.5.9 Fifth Measurement: 230 ms

How well does this work? The resulting code takes 23 ticks, or 230 ms. This translates to
an average of 1.4 ms per point, or 44,800 clock cycles. The profile is shown in Table 12.6.
The floating point math still dominates.

Table 12.7 summarizes the impact of each optimization. If we wanted to continue with
optimizations, we could examine several directions:

� Replace trig functions with lower-precision but faster polynomial approximations.
� Replace floating point math with fixed point math.
� Arrange point data into a two-dimensional array to reduce number of comparisons

needed.
� Convert math to use matrix operations on unit circle, avoiding the law of cosines.

CHAPTER 12 / OPTIMIZING FOR PROGRAM SPEED 329

12.6 GUIDANCE FOR CODE OPTIMIZATION

So far in this chapter we have learned three concepts. First, we now know how to profile an
application. Second, we have learned that the part of the program which is slowest is often
a surprise. In many cases the developer does not realize that the object code for a given op-
eration will be slow, while other times the developer is sloppy and includes extra computa-
tions or uses a poor algorithm or data type. Another common problem is that the developer
thinks the compiler is performing an obvious optimization when in fact it is not due to pos-
sible side effects. Finally, we have seen several optimization methods and approaches.
These are just a few of the vast range possible. The best optimization approach is built on
understanding two critical system aspects: Where does the program spend most of its time?
What object code is the compiler generating? Given this context, we can now move on to
examining different optimization strategies.

TABLE 12.6 Execution Time Profile after Fourth Optimization Pass

COUNT REGION NAME TIME (%)

7 ?0EMOVE_LONG_L06 30%

5 ?0EWRKSEG_PUSH_L09 22%

3 F_ADD 13%

2 ?0EWRKSEG_POP_L09 9%

2 __finfws 9%

1 __iar_Dint 4%

1 __iar_Sin 4%

1 ?0EFUNC_LEAVE_L06 4%

1 F_MUL 4%

TABLE 12.7 Speed-Ups Resulting from Optimizations

OPTIMIZATION TICKS INCREMENTAL CUMULATIVE

Initial program 322 — —

Remove extra calls to Calc_Bearing and
Calc_Distance

143 2.25 2.25

Help compiler pre-compute PI/180 130 1.10 2.48

Store points in radians, precompute sin
& cos of latitude

60 2.17 5.37

Don’t compute full distance until essential 23 2.61 14.00

330 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

12.6.1 Your Mileage Will Vary

We need to keep several points in mind as we examine these types of optimizations.

� Each program is structured differently and likely has a different bottleneck.
� There may be several different bottlenecks depending on which code is executing.

A system with four different operating modes (or four different input events) may
have four different bottlenecks, so be sure to profile the code for a variety of oper-
ating modes and input conditions.

� A program’s bottleneck may move after an optimization is performed. After all, it
is just the slowest part of the code. If it is optimized enough, then another piece of
code becomes the slowest.

� Different processor architectures have different bottlenecks. Accessing memory in
a deeply-pipelined 2 GHz processor may cost 500 cycles. On the RL78, however,
there is generally only a single cycle penalty. Hence optimizations which are ef-
fective on one processor architecture may be inconsequential on another.

� Different compilers use different approaches to generate code. Recall that there are
many possible assembly language programs which can implement the specifica-
tion given by a source-level program. One compiler may aggressively unroll loops,
while another may not. If you manually try unrolling loops with the first compiler
you likely will see no performance improvement. It is valuable to examine the
optimization section of the compiler manual (e.g., (IAR Systems AB, 2011)) for
guidance and suggestions.

There are many excellent guides to optimizing code; some are listed in the references at the
end of the chapter. Here we seek to provide a framework with which to classify the avail-
able optimization approaches.

12.6.2 Reduce Run-time Work

There are many different ways to reduce the amount of computation which must be done
by the program at run-time. Here are a few high-level approaches which may be helpful.

12.6.2.1 Precompute before Run-time

Take advantage of the compiler’s preprocessing capabilities, as well as other tools such as
spreadsheets. How much computation can be done ahead of time? In the example program
we saved time by storing each coordinate in radians, eliminating the conversion from de-
grees. We also saved time by pre-computing the sine and cosine of the latitude for each co-
ordinate.

CHAPTER 12 / OPTIMIZING FOR PROGRAM SPEED 331

12.6.2.2 Quit Early and Often

If it is possible to use the result of partial computations to make decisions, then do so. In
the example program we saved time by not computing the actual distance, but instead mak-
ing the distance comparison using an intermediate value before it is passed through the arc
cosine function.

12.6.2.3 Arrange Data to Minimize the Work

It may be possible to arrange data so that less work is necessary. For example, after the
first profiling run we know which regions dominate the execution time of the target pro-
gram. We could sort the region table to place the most frequently accessed regions at the
top. This would dramatically reduce execution time of the ISR and hence profiling over-
head.

12.6.3 Do the Remaining Run-time Work Efficiently

After eliminating as much run-time work as possible, we want to do the remaining work as
quickly as possible. Here are a few high-level approaches.

12.6.3.1 Use a Better Algorithm

The profiling code could be optimized to reduce the ISR’s execution time overhead. The
current implementation uses a linear search, starting with the first entry and advancing to
the next until it finds a match. If we ensure that the region list entries are sorted by address,
then we can use a binary search to find the matching region. This will reduce search time
dramatically.

Similarly, the coordinates are stored alphabetically by name. Sorting these by longi-
tude would reduce the number of comparisons required. In fact, sorting the coordinates
into a two-dimensional data structure could further reduce the number of comparisons.
This latter example is left as an exercise for the reader.

12.6.3.2 Avoid Double-precision Floating Point Math

Many embedded compilers stick to the letter of the law for ANSI C. The functions in the
standard math library take double-precision float arguments, perform their operations on
double-precision floats, and return double-precision results. This is usually far more preci-
sion than is needed for embedded systems. Some compilers offer single-precision versions
of functions (e.g., sinf() in addition to sin()). Others allow one to specify that double-

332 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

precision operations and variables in the source code should be implemented with the cor-
responding single-precision versions.

Some embedded compilers omit double-precision floating point math, treating it as
single-precision. Others support it, but offer a compiler option switch which forces double-
precision floating point math to single-precision.

12.6.3.3 Avoid Single-precision Floating Point Math, Too

Unless a microcontroller has a hardware floating point unit, floating point math is emulated
in software. It is slow and uses large amounts of memory (for the library routines, your
code, and the variables). Instead, it is often possible to use fixed-point math instead. Some
references are presented below.

12.6.3.4 Use Approximations

The trigonometric and other math library functions are very accurate—perhaps more accu-
rate than necessary for your application. These functions are typically implemented with nu-
merical approximations. The library designers ensured high accuracy by using a large num-
ber of terms or iteration steps in the approximation. Perhaps your application doesn’t need
as much accuracy, in which case you may benefit from implementing your own reduced-
precision polynomial approximations. Jack Ganssle provides excellent explanations in his
articles (http://www.ganssle.com/articles/atrig.htm, http://www.ganssle.com/approx.htm).

12.6.4 Use MCU-Appropriate Data

12.6.4.1 Use the Right Memory Model

Compilers for embedded systems typically support multiple memory models, varying
in how much memory can be addressed. This is because accessing more data requires
longer addresses and pointers, which in turn typically require more instructions and
hence memory and execution time. Using the smallest possible memory model can re-
duce the amount of code needed, speeding up the program and reducing memory
requirements.

12.6.4.2 Data Size

Use the smallest practical data size. Data which doesn’t match the machine’s native word
size will require extra instructions for processing. Native data sizes for the RL78 architec-
ture are the bit, byte, and 16-bit word.

CHAPTER 12 / OPTIMIZING FOR PROGRAM SPEED 333

12.6.4.3 Signed vs. Unsigned Data

Some ISAs offer uneven performance for signed or unsigned data, so there may be a bene-
fit to using one type or another. The IAR Compiler manual recommends using unsigned
data types rather than signed data types if possible.

12.6.4.4 Data Alignment

Some memory systems offer non-uniform access speeds based on alignment. For example,
the RL78 has word-aligned memory, so smaller elements (e.g., chars) in a structure may re-
sult in padding bytes, wasting memory.

12.6.5 Help the Compiler do a Good Job

12.6.5.1 Basics: ISA Familiarity, Tweak/Compile/Examine/Repeat

How do we know if the compiler is doing a good enough job on your code? To answer this
we need to understand enough assembly language for the MCU to understand what the
compiler has generated. This textbook and the RL78 software reference manual contain
more details. We also need to understand how C concepts and mechanisms are imple-
mented in assembly code. How are subroutines called? How are arguments passed and re-
turned? How are switch statements implemented? This textbook’s chapter on C as imple-
mented in assembly language has more details.

An iterative and experimental approach is the best way to evaluate how well the com-
piler is doing its job. Tweak the code, recompile the module, and examine the assembly
code output. Repeat as necessary.

12.6.5.2 What Should the Compiler be Able to Do on Its Own?

The compiler should do these optimizations at a fine-grain level (assembly-language oper-
ations) if you enable optimizations. Don’t waste your time on these optimizations, as the
compiler should handle them automatically:

� Perform compile-time math operations
� Reuse a register for variables which do not interfere
� Eliminate unreachable code, or code with no effect
� Eliminate useless control flow
� Simplify some algebraic operations (e.g., x * 1 � x, x � 0 � x)
� Move operation to where it executes less often (e.g., out of a loop)
� Eliminate redundant computations

334 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

� Reuse intermediate results
� Unroll loops
� Manually inline functions (instead use macros)

Note that the compiler has a harder time identifying optimization opportunities across
more complex program structure boundaries (or when accessing memory), so it may not be
able to do as much as expected.

12.6.5.3 Don’t Handcuff the Compiler

The compiler would like to optimize the code but must be conservative due to possible un-
safe side effects. Code should be written to make it clear to the compiler what side effects
are impossible. There are many possible issues, but here are a few suggestions:

� Using complete ANSI function prototypes make it possible for the compiler to
promote arguments so they are passed to functions by register rather than through
the stack.

� Taking the address of an automatic variable may prevent the compiler from pro-
moting it to a register variable.

� Use qualifiers such as const and static when helpful.
� Mixing data types leads to automatic type promotions which are specified by

ANSI C. These typically lead to library calls which waste time and memory. As
these promotions aren’t immediately obvious in the source code, it is valuable to
examine the generated assembly code.

This subject is covered in detail in Jakob Engblom’s article “Getting the Least out of your
C Compiler” (Engblom, 2002).

12.7 RECAP

In this chapter we have seen that determining which code to optimize is as important as
determining how to optimize it. The key tools in the embedded software developer’s tool-
box are a profiler, an understanding of assembly code, and a creative mind.

12.8 REFERENCES

Engblom, J. “Getting the Least out of your C Compiler.” San Francisco: Embedded Systems Conference, 2002,

http://www.engbloms.se/publications/engblom-esc-sf-2001.pdf.

CHAPTER 12 / OPTIMIZING FOR PROGRAM SPEED 335

IAR Systems AB. IAR C/C_ Compiler Reference Guide for the Renesas RL78 Microcontroller Family.

Sweden: IAR Systems AB, 2011.

Crenshaw, J. Math Toolkit for Real-Time Programming. CMP, 2000, ISBN-1929629095

Kastner, R., Hosangadi, A., Fallah, F. Arithmetic Optimization Techniques for Hardware and Software

Design. Cambridge University Press, 2010, ISBN-0521880998

Lemieux, J. Fixed-Point Math in C. Embedded Systems Programming Magazine, April 2001.

Jones, N. Efficient C Code for Eight-bit MCUs. Embedded Systems Programming Magazine, November

1998.

12.9 EXERCISES

1. Write a program and compile it to determine why unsigned data is recommended
over signed data. What is the performance impact? What are the differences in the
assembly code?

2. Modify the distance calculation program to store the coordinates into a two-
dimensional data structure in order to reduce the number of comparisons needed to
find the closest point. What is the performance impact of the optimization?

3. Modify the profiling support code and tools to sort the region table to place the
most frequently accessed regions at the top of the list. What is the performance im-
pact of the optimization?

337

13.1 LEARNING OBJECTIVES

This chapter deals with how to make an embedded system use less power or energy.

� We examine the differences between power and energy.
� We evaluate how a digital circuit uses power and then use this to develop basic op-

timization approaches.
� We examine the clock control mechanisms available in RL78 family MCUs.
� We review the standby states of RL78 family MCUs, in which no instructions

execute.
� We explore the power and energy characteristics of the RL78G13 MCU.
� We walk through an example embedded application to optimize energy use, first

for the operating lifetime and then for the standby lifetime.

13.2 BASIC CONCEPTS

Let’s begin by reviewing the differences between power and energy, which are related but
different.

13.2.1 Power and Energy

Power is the product of current and voltage. One Ampere of current flowing across a one
Volt drop will dissipate one Watt of power.

Energy is power multiplied by time. Power is an instantaneous value, while energy in-
tegrates power over time. One Watt being dissipated for a period of one second represents
one Joule of energy.

Do we want to save power, energy, or both?

� In some cases, there is a limited amount of energy available. For example, con-
sider a rechargeable NiMH AA cell with a nominal capacity of 2500 mAH, or

Power and Energy Optimization

Chapter ThirteenChapter Thirteen

338 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

2.5 AH. This means the cell can supply 25 mA for one hundred hours. We will as-
sume the average voltage is 1.2 V.1 Multiplying 1.2 V by 2.5 AH gives the cell en-
ergy capacity as 3 Watt-Hours, or 3 * 60 * 60 J � 10800 J.

� In some cases, the power budget is limited. There may be limited power available.
For example, a photovoltaic panel may produce at most 100 mW, and less when
the sky is cloudy. In other applications there is limited cooling available. The
power dissipated by the circuit heats it above the ambient temperature, based upon
thermal resistance and available cooling. In order to keep the circuit from over-
heating we need to limit the power dissipated.

13.2.2 Digital Circuit Power Consumption

1 A NiMH cell’s voltage is not constant. It depends on the state of charge, load current, and temperature. The
voltage is roughly 1.35 V when fully charged, and falls to roughly 1.0 V when mostly discharged.

Q1

Q2

In Out

Figure 13.1 Example of a digital inverter circuit.

Let’s take a look at how digital circuits use power and energy. The inverter in Figure 13.1 dis-
sipates power in two ways.

� When the input signal is not changing, one transistor is on (saturated or active)
and the other is off. For example, a low input level will turn on Q1 and turn off Q2.
A high input level will turn off Q1 and turn on Q2. In either case, since the transis-
tors are in series, the total resistance is quite large, and only a small amount of cur-
rent flows from VDD to ground. This current leads to a static power component
which is proportional to the square of the supply voltage. The power is still dissi-
pated even though there is no switching, so it is independent of the clock frequency.

CHAPTER 13 / POWER AND ENERGY OPTIMIZATION 339

� When the input signal is changing, then as the input voltage changes from one logic
level to another, the transistors will pass through the linear operation mode between
off and fully on. In addition, some components in the circuit have capacitance
(e.g., gates, wires) which must be charged or discharged in order to change the volt-
age level of a signal. This current leads to a dynamic power component which is
proportional to the square of the supply voltage. It also depends on how often the
switching occurs (i.e., the frequency of the switching).

The resulting total power dissipated can be modeled as the sum of the static and the dy-
namic power components:

Sp and Cp are proportionality constants representing conductance and capacitance and can
be experimentally derived.

13.2.3 Basic Optimization Methods

The power equation gives us some insight into how to reduce the power consumption for a
digital circuit.

� Lowering the supply voltage will reduce power quadratically for both terms. For
example, cutting VDD to 80 percent of its original value will reduce power to
(80%)2 � 64% of its original value.

� Shutting off the supply voltage for unused circuits will eliminate all of their power.
� Disabling the clock (“clock gating”) for unused circuits will eliminate their dy-

namic power.
� Reducing the switching frequency for circuits which are used will reduce their dy-

namic power proportionately.

Reducing energy is a bit more involved. As we reduce the supply voltage, transistors take
longer to switch because when they turn on they are operating closer to the threshold volt-
age VTh, so they do not turn on as strongly (since a saturated MOSFET’s current depends
on (VGS � VTh)

2).

Looking at this from the point of view of a CPU core lowering the clock frequency means
that the processor has to be active longer to complete the same amount of processing work.

ƒmax �
KP(VDD � VTh)2

VDD

P � SpV2
DD � CpV2

DDƒsw

340 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

Optimizing energy is more complex than optimizing power since it requires us to balance
multiple factors. Slowing the clock ƒmax lets us lower VDD and therefore both static and dy-
namic power. Slowing the clock also raises the computation time, so that power is inte-
grated over a longer time, potentially raising total energy used. If there is a low-power
standby mode available, in many cases it turns out that the best approach is to run the
processor as fast as possible (at the minimum VDD possible for that frequency) when there
is work to do, and put the processor into standby mode otherwise.

13.3 RL78 CLOCK CONTROL

Let’s start by looking at how we control the clock frequency and perform clock gating for
the RL78 family of MCUs (Renesas Electronics Corporation, 2011.)

13.3.1 Clock Sources

FRQSEL HOCODIV

MC M0 CSS

PER0

High-Speed
On-Chip
Oscillator

Low-Speed
On-Chip
Oscillator

High-Speed
System Clock

Oscillator

Subsystem
Clock

Oscillator

fIH 1-32 MHz

fMX 1-20 MHz
fMAIN

fCLK

RTC

IT

WDT

CPU

TAU0

TAU1

SAU0

SAU1

ADC

IICA0

IICA1

fSUB 32.768 kHz

fIL
,15 kHz

Figure 13.2 RL78 clock system overview.

CHAPTER 13 / POWER AND ENERGY OPTIMIZATION 341

There are multiple oscillators in an RL78 family MCU, as shown in Figure 13.2. The first
three can be used to clock the CPU and most of the peripherals (serial and timer array
units, analog to digital converter, I2C interface, etc.).

� The high-speed on-chip oscillator is configurable and generates clock signal fIH at
certain frequencies from 1 to 32 MHz. These frequencies are approximate, and
the accuracy can be increased by adjusting the value in the trimming register
HIOTRM.

� The high-speed system clock oscillator uses an external crystal, resonator, or clock
signal to generate the signal fMX, which can range from 1 to 20 MHz.

� The subsystem clock oscillator uses an external 32.768 kHz resonator, crystal or
clock signal to generate the fXT signal.

There is a fourth oscillator available as well:

� The low-speed on-chip oscillator generates the fSUB signal at approximately
15 kHz (�2.25 kHz). This signal can only be used by the watchdog timer, real-
time clock, or interval timer.

13.3.2 Clock Source Configuration

There are several registers used to configure the various clocks and how they are used.

� The Clock Operation Mode Control (CMC) register determines critical parameters
such as oscillation amplitude and frequency range, and whether external pins are
used as crystal connections or input ports. It can only be written once after reset in
order to protect it from corruption by abnormal program behavior.

� The System Clock Control (CKC) register selects the CPU/peripheral hardware
clock (fCLK) using the CSS bit, and the main system clock (fMAIN) using the
MCM0 bit.

� The Clock Operation Status Control (CSC) register controls whether an oscillator
is stopped or running. The MSTOP bit controls the high-speed system clock oscil-
lator, the XTSTOP bit controls the subsystem clock oscillator, and the HIOSTOP
bit controls the high-speed on-chip oscillator.

� The Peripheral Enable Register 0 (PER0) allows the program to disable the clock
signals for unused peripherals in order to save power. The analog to digital con-
verter, and each timer array unit, serial array unit, and IICA unit can be controlled
independently.

342 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

13.3.3 Oscillation Stabilization

a

STOP mode release

X1 pin voltage
waveform

Figure 13.3 High-speed system clock oscillator start-up time.

There is some time delay between when the high-speed system clock oscillator is started
and when it runs at the correct frequency and amplitude, as shown in Figure 13.3. There are
two registers associated with controlling and monitoring this time delay.

� The Oscillation Stabilization Time Select register (OSTS) specifies how long the MCU
waits for the X1 clock to stabilize when coming out of stop mode. Delays from 28 to
218 X1 counts are possible (i.e., from tens of microseconds to tens of milliseconds).

� The Oscillation Stabilization Time Counter Status register (OSTC) indicates how
much time has elapsed since coming out of stop mode. Each bit is set to one as the
time threshold passes and remains at one.

13.3.4 High-Speed On-Chip Oscillator Frequency Selection

The high-speed on-chip oscillator’s output frequency fIH can be selected in two ways.
First, the FRQSEL bits of option byte 000C2H can be used to specify a speed.

FRQSEL3 FRQSEL2 FRQSEL1 FRQSEL0
FREQUENCY OF THE HIGH-SPEED

ON-CHIP OSCILLATOR

1 0 0 0 32 MHz

0 0 0 0 24 MHz

1 0 0 1 16 MHz

0 0 0 1 12 MHz

1 0 1 0 8 MHz

1 0 1 1 4 MHz

1 1 0 1 1 MHz

Other than above Setting prohibited

Figure 13.4 Oscillator speed selection with option byte 000C2H.

CHAPTER 13 / POWER AND ENERGY OPTIMIZATION 343

Second, the frequency select register HOCODIV can be used, as shown in Figure 13.5.
There are two possible sets of frequencies based on whether the FRQSEL3 bit of option
byte 000C2H is set to 1 or 0.

13.4 RL78 STANDBY MODES

In addition to the normal operating mode of executing instructions, the RL78 offers several
standby modes in which the processor cannot execute instructions but other portions of the
MCU continue to operate. Figure 13.6 presents a state diagram showing the halt, stop, and
snooze states and possible transitions among them.2 Note that the peripherals are function-
ing in the Halt and Operating states, while most are off in the Stop and Snooze modes.
Turning off the peripherals dramatically reduces power consumption.

A circuit’s current consumption can be cut significantly by using the standby states:
starting at 2.1 mA when executing instructions at 32 MHz, current falls to 540 mA when
halted but with clocks running at 32 MHz, and falls further to 0.23 mA when stopped with
only the 32.768 kHz subsystem clock running.

Table 13.1 shows which portions operate in the different standby modes. Note that
which clock source is used affects which subsystems can operate in HALT mode.

HIGH-SPEED ON-CHIP OSCILLATOR
CLOCK FREQUENCY

HOCODIV2 HOCODIV1 HOCODIV0 FRQSEL3 BIT IS 0 FRQSEL3 BIT IS 1

0 0 0 24 MHz 32 MHz

0 0 1 12 MHz 16 MHz

0 1 0 6 MHz 8 MHz

0 1 1 3 MHz 4 MHz

1 0 0 Setting prohibited 2 MHz

1 0 1 Setting prohibited 1 MHz

Other than above Setting prohibited

Figure 13.5 Oscillator speed selection with HOCODIV register.

2 Note that this is a simplification of the complete state diagram present in the RL78G13 hardware manual.

344 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

Let’s examine each of the available standby states next.

13.4.1 Halt

A program executes the HALT instruction to enter the halt mode. The CPU stops executing
instructions, but some or all peripherals continue to operate. If the main system clock is
used then all peripherals will be able to operate, while if the subsystem clock is used some
peripherals will be unavailable.

The MCU exits the halt state if it receives an unmasked interrupt request or a reset
signal.

HSOCO On

HSCO/XT On

SSCO/XT1 On

CPU

Peripherals

Off

On

Halt
HSOCO On

HSCO/XT On

SSCO/XT1 On

CPU

Peripherals

Off

On

Operating
HSOCO Off

HSCO/XT Off

SSCO/XT1 On

CPU

Peripherals

Off

Off

Stop

HSOCO On

HSCO/XT Off

SSCO/XT1 On

CPU

Peripherals

Off

Off*

Snooze

540 mA @ 32 MHz
0.3 mA @ 32 kHz

2.1 mA @ 32 MHz
4.2 mA @ 32 kHz 0.23 mA

HALT
Instruction

Unmasked
Interrupt or Reset

STOP
Instruction

Unmasked
Interrupt or Reset

Conversion
completes

without
generating
interrupt

Hardware
Trigger
Event

Conversion completes
generating interrupt

Figure 13.6 MCU operating and standby state transitions with ADC Snooze mode.

CHAPTER 13 / POWER AND ENERGY OPTIMIZATION 345

13.4.2 Stop

A program executes the STOP instruction to enter the stop mode, which shuts down most
peripherals in order to save additional power. The stop mode shuts down the main oscilla-
tor (X1 pin). When exiting stop mode, the oscillator must start up again so it incurs the sta-
bilization delay described earlier.

The MCU exits the stop state if it receives an unmasked interrupt request or a reset
signal.

TABLE 13.1 MCU Subsystem Operation in Standby Modes.

HALT

SUBSYSTEM
MAIN SYSTEM

CLOCK
SUBSYSTEM

CLOCK STOP SNOOZE

Port y y y y

Power On Reset y y y y

Voltage Detection Circuit y y y y

External Interrupt y y y y

Key Interrupt y y y y

Real-Time Clock y y y y

Interval Timer y y y y

Clock/Buzzer y config. config. config.

Watchdog Timer config. config. config. config.

Serial Array Unit y config. wake to snooze y

Analog to Digital Converter y wake to snooze y

I2C Array y adx. match wake

Multiplier/Divider/Accumulator y config.

Direct Memory Access y config.

Timer Array Units y config.

General Purpose CRC y y

High-Speed CRC y

Illegal Memory Access Detection y

346 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

13.4.3 Snooze

In order to use the Snooze mode the program must configure the peripheral accordingly,
and then the MCU enters the Snooze mode with a STOP instruction. The analog to digital
converter and serial array units can be configured to move the processor from STOP to
SNOOZE mode when an appropriate trigger condition occurs.

Real-time clock (RTC),
Interval timer

A/D converter Clock generator

Hardware trigger
input

Clock request signal
(internal signal)

High-speed on-chip
oscillator clock

A/D conversion end
interrupt request
signal (INTAD)

Figure 13.7 ADC and snooze mode operation.

For example, the ADC can be be triggered by the real-time clock or the interval timer, as
shown in Figure 13.7. When triggered, the ADC will assert a signal starting up the high-
speed on-chip oscillator clock. The clock starts up (and stabilizes for the specified delay)
and is fed to the ADC, which uses it to perform the specified conversion(s). After the con-
version(s) complete there are two possible actions, based on interrupt signal generation.

� If no interrupt is generated, the clock stops running and the system goes back into
snooze mode.

� If an interrupt is generated, the clock continues running. The interrupt signal
wakes up the MCU from STOP mode so it can execute instructions.

Further details are available in a white paper (Renesas Electronics America Inc., 2011).

13.5 RL78 POWER AND ENERGY CHARACTERISTICS

TABLE 13.2 Minimum Supply Voltage vs. Maximum Frequency.

MINIMUM VDD MAXIMUM FREQUENCY

1.6 V 4 MHz

1.8 V 8 MHz

2.4 V 32 MHz

CHAPTER 13 / POWER AND ENERGY OPTIMIZATION 347

Let’s look at the RL78/G13 hardware manual’s electrical characteristics section. As shown
in Table 13.2, the minimum voltage required increases as the maximum desired frequency
increases. The transistors need higher voltages to switch faster and support higher clock
frequencies.

TABLE 13.3 RL78G13 Energy per Clock Cycle for Various Speeds and Voltages.

FREQUENCY
(MHz)

VOLTAGE
(V)

CURRENT
(mA)

POWER
(mW)

ENERGY PER CYCLE
(pJ)

0.032768 2 0.0049 0.0098 299.07

8.000000 2 1.3000 2.6000 325.00

32.000000 3 2.1000 6.3000 196.88

Next let’s examine how much energy is used per clock cycle at various operating points, as
shown in Table 13.3. This data was gleaned from the hardware manual and is a good start-
ing point to see how the MCU behaves.

� The lowest power operating point runs the clock as slow as possible (using the
32.768 kHz oscillator), and therefore can use a low voltage (2 V) to reduce power.
The resulting power is 9.8 mW.

� The lowest energy operating point on the other hand runs the clock as fast as pos-
sible (32 MHz with the on-chip oscillator). In this case, the power has risen to
6.3 mW, but the energy per cycle is a mere 196.88 pJ per clock cycle. This is the
most energy-efficient of the operating points.

This apparent contradiction makes sense if we consider that static power is wasted from a
point of view of computations. The faster we run the clock, the less overhead static power
incurs on each computation. In general, the most energy-efficient way to use an MCU is to
run at top speed when there is any work to do, and shift into an extremely low-power
standby state otherwise.

It is interesting to note that the MCU can operate with lower power or energy than
these levels by using a lower operating voltage. Notice that VDD � 1.6 V is sufficient for
running at 32 kHz (see Table 13.2). This is an optimal operating point: it provides the high-
est clock frequency which will run at a given voltage. We would expect the power to fall to
about (1.6 V/2.0 V)2 � 64% of the original value. If we scale all of the power and energy
calculations according to the minimum voltages we can predict the minimum power and
energy required, as shown in Table 13.4.

348 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

The results of the calculations show that the power used for the 32 kHz and 32 MHz cases
falls by nearly one half, and the energy falls by about one third. The 8 MHz case sees a
smaller increase because the relative voltage drop is smaller (2.0 V to 1.8 V).

13.6 POWER AND ENERGY OPTIMIZATION

TABLE 13.4 Estimated Power and Energy for RL78G13 Running
at Optimal Operating Points.

FREQUENCY
(MHz)

VOLTAGE
(V)

ESTIMATED
POWER (mW)

ESTIMATED ENERGY
PER CYCLE (pJ)

0.032768 1.6 0.006272 191.41

8.000000 1.8 2.268000 283.50

32.000000 2.4 3.744000 117.00

Battery
Sensor

Subsystem
MCU

BlueTooth
Transceiver
Subsystem

Level
Shifter

Boost
Power

Converter

VBAT (3.6 to 5.4 V)

12 V

Figure 13.8 Remote sensor block diagram.

Let’s see how to put together all of these techniques and factors by examining how to opti-
mize the power and energy use of a remote sensor system shown in Figure 8. We use a sen-
sor subsystem to measure the parameter of interest. The sensor subsystem transmits its
measurements through a serial port to the MCU, which relays this information through a
Bluetooth wireless transceiver to the rest of the system. The MCU also reports local battery
voltage information via Bluetooth so that we can determine when replacements are needed.

� The battery consists of four NiMH AAA cells in series, producing a voltage from
3.6 to 5.4 V. Each D cell has a nominal capacity of 1 AH. If we assume an average
voltage of 5 V, the energy capacity is 5 WH � 5 W * 3600 s � 18,000 J.

CHAPTER 13 / POWER AND ENERGY OPTIMIZATION 349

� The sensor subsystem runs at 12 V, so we use a boost power converter to generate
a regulated 12 V supply from the battery voltage.

� The boost converter is only 85% efficient, so it uses some additional power.
� The level shifter uses a negligible amount of power and can safely be disregarded.
� We use an RL78G13 MCU running at 32 MHz with the high-speed on-chip oscillator.
� The Bluetooth transceiver runs internally at 3.3 V, but contains an onboard low-

dropout linear voltage regulator which can accept up to 6 V.

13.6.1 Power Analysis

TABLE 13.5 Power Use by System Components.

COMPONENT
VOLTAGE

(V)
CURRENT

(mA)
POWER
(mW)

Sensor 12 60.0 720

MCU 5 4.6 23

Bluetooth Transceiver 5 30.0 150

Boost Power Converter 108

We start with a power analysis. We will assume that the battery voltage is 5 V in order to
simplify our initial analysis. We multiply operating voltage by current to find the power
used by each component, as shown in Table 5. We can see that the majority of the power is
used by the sensor subsystem.

13.6.2 Energy Analysis

Next let’s look at how the energy is used. If all components are used all the time, we sim-
ply multiply power by 24 hours to find daily energy use, which unsurprisingly will show
the sensor subsystem dominating the energy use as well.

13.6.2.1 Reducing Sensor Energy Use

What if our system does not need to have all components powered all of the time? Instead,
each day the sensor is only activated to perform a reading, for a total of 15 minutes per day. In
the remainder of the time the sensor and its power converter are turned off. We can now add
duty cycles and daily energy use, resulting in Table 6. We see that the Bluetooth transceiver
now dominates energy use. Our 18 kJ battery will power the system for roughly 1.15 days.

350 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

13.6.2.2 Reducing Bluetooth Power Energy Use

We can reduce Bluetooth power and energy consumption in a few ways. Let’s examine two
options.

First, we can reduce the supply voltage of the Bluetooth module. Recall that it has an on-
board 3.3V linear regulator. In this case it dissipates (5 � 3.3V) * 30 mA � 51 mW, or about
one third of the Bluetooth module’s power. We need to use a switching power converter to
perform this conversion, as it will be more efficient than a linear regulator. An added bonus of
this approach is that we can reduce the supply voltage for the RL78 as well, reducing its
power and energy use. The disadvantage is the circuit will cost more and use more space.

Second, we can reduce the amount of time the Bluetooth module is active, and have it
spend the remainder of its time in a lower power mode. This will require some additional
configuration of the module. The Bluetooth protocol offers various low-power modes
specifically designed to save energy by reducing the duty cycle. When the sensor is turned
off we will use this approach (when the sensor is on, we want minimum latency and high-
est speed). We will use the sniff mode, in which this node will keep its radio turned off most
of the time, so the current consumption is only 3 mA. Periodically it will turn on the radio
for communication, raising the current to 30 mA. We assume a radio on-time of 20 ms and
total period of 1.5 seconds, resulting in an average current of 3.36 mA in sniff mode.

By applying both of these approaches we can reduce the daily energy use by a factor of
almost five, as shown in Table 7. Our 18 kJ battery will power the system for roughly
5.6 days.

13.6.2.3 MCU Clock Speed Reduction

We now see that the MCU dominates the power consumption. There is much room for op-
timization here because the MCU has a very light processing load. It just needs to sample
and log the battery voltage periodically (e.g. every minute) and report on it via Bluetooth
(e.g. every hour).

TABLE 13.6 Energy use by system components. Battery life is 1.15 days.

COMPONENT
VOLTAGE

(V)
CURRENT

(mA)
POWER
(mW)

HOURS
ACTIVE/DAY

DUTY
CYCLE

ENERGY
(J)

Sensor 12 60.0 720 00.25 001.0% 00,648

MCU 5 4.6 23 2400. 100.0% 01,987

Bluetooth Transceiver 5 30.0 150 2400. 100.0% 12,960

Boost Power Converter 108 00.25 001.0% 00,097

Total 15,692

CHAPTER 13 / POWER AND ENERGY OPTIMIZATION 351

TABLE 13.7 Energy Use After Adding 3.3 V Buck Regulator
and Using Bluetooth Sniff Mode. Battery Life is 5.6 days.

COMPONENT
VOLTAGE

(V)
CURRENT

(mA)
POWER
(mW)

HOURS
ACTIVE/DAY

DUTY
CYCLE

ENERGY
(J)

Sensor 12.0 60.00 720.00 00.25 001.0% 648

MCU 03.3 04.60 15.18 2400. 100.0% 1,312

Bluetooth Transceiver 03.3 03.36 11.088 2400. 100.0% 958

Boost Power Converter 97

Buck Power Converter 227

Total 3,242

TABLE 13.8 Energy use after dropping MCU clock rate to 1 MHz. Battery life is 8.9 days.

COMPONENT
VOLTAGE

(V)
CURRENT

(mA)
POWER
(mW)

HOURS
ACTIVE/DAY

DUTY
CYCLE

ENERGY
(J)

Sensor 12.0 60.00 720.000 00.25 001% 0,648

MCU (1 MHz) 03.3 00.72 002.376 24.00 100% 0,205

Bluetooth Transceiver 03.3 03.36 011.088 24.00 100% 0,958

Boost Power Converter 00,97

Buck Power Converter 0,116

Total 2,025

There are several approaches to consider: slowing down the clock, using a standby
mode and lowering the supply voltage. There is an RL78 application note which goes
into detail and is recommended reading (Renesas Electronics America Inc., 2011).
Let’s take a look at where the energy use data leads us in our continued optimization
investigations.

How slowly can we run the MCU clock? This depends upon the amount of processing
needed as well as clock speeds needed for serial communications. Given the light process-
ing load we can drop the speed to 1 MHz (generated by the high-speed on-chip oscillator),
and the MCU current will fall to 0.72 mA. The resulting energy for the system falls
to 2025 J as shown in Table 8. The total battery life rises to 8.9 days. Reducing the MCU
current has left the Bluetooth transceiver as the highest energy user.

352 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

13.6.3 Standby Mode Energy

Let’s consider another way this system might be used. What if we keep it powered off most
of the time, but we need to use it occasionally? We would like for the MCU to monitor the
battery voltage and report it via Bluetooth so we can determine if we need to recharge the
batteries. This is similar to the standby battery lifetime measurement used for cellphones.

TABLE 13.9 Energy use in standby mode. Battery life is 14.1 days.

COMPONENT
VOLTAGE

(V)
CURRENT

(mA)
POWER
(mW)

HOURS
ACTIVE/DAY

DUTY
CYCLE

ENERGY
(J)

Sensor 12.0 60.00 720.000 00 000% 00,00

MCU 03.3 00.72 002.376 24 100% 0,205

Bluetooth Transceiver 03.3 03.36 011.088 24 100% 0,958

Boost Power Converter 000,0

Buck Power Converter 0,116

Total 1,280

Our energy use model has now changed. We only need to examine power when the
sensor subsystem is off, as shown in Table 9. Daily energy use falls to 1280 J, so the
standby battery life is 14.1 days.

13.6.3.1 Shutting Off Bluetooth When Idle

We see the Bluetooth transceiver uses most of the energy, but in fact we only need for the
transceiver to be turned on occasionally to report the battery voltage. Rather than use sniff
mode we will shut down the transceiver completely, and power it up once every five min-
utes. We assume it will take about two seconds to start up, connect, transmit its data, and
shut down. The resulting energy use has fallen by a factor of about five, as shown in Table
10. The battery life is now 62.4 days.

13.6.3.2 Halt Mode

The MCU is now the largest consumer of energy, but it has very little computing to do. We
can put the MCU into halt mode when it is idle. All of the oscillators will continue running,
so we will not need to change much code. The MCU current will fall to 0.260 mA. We es-
timate that the code will need to run about 100 ms every minute. In this time the program
will wake up the MCU, sample the ADC, evaluate the conversion result, and go back to
sleep. Every five minutes the MCU will need to also power up the Bluetooth transceiver

CHAPTER 13 / POWER AND ENERGY OPTIMIZATION 353

and send the data, taking two seconds. Hence the duty cycle for the MCU in operating
mode can be calculated as:

For the remaining 99.3332% of the time the MCU will be in halt mode.

D �
100 ms

60 s
�

2 s

60 * 60 s
� 0.6668%

TABLE 13.10 Energy use in standby mode with Bluetooth
turned off except when needed. Battery life is 62.4 days.

COMPONENT
VOLTAGE

(V)
CURRENT

(mA)
POWER
(mW)

HOURS
ACTIVE/DAY

DUTY
CYCLE

ENERGY
(J)

Sensor 12.0 60.00 720.000 0000. 000% 000

MCU 03.3 00.72 002.376 2400. 100% 205

Bluetooth Transceiver 03.3 03.36 099000. 00.16 001% 057

Boost Power Converter 000

Buck Power Converter 026

Total 289

TABLE 13.11 Energy Use with 1 MHz On-Chip Clock and Halt Mode. Battery life is 146.9 Days.

OPERATING HALT

COMPONENT
VOLTAGE

(V)
CURRENT

(mA)
POWER
(mW)

CURRENT
(mA)

POWER
(mW)

DUTY
CYCLE

ENERGY
(J)

Sensor 12.0 60.00 720.000 0.0000% 000.0

MCU (1 MHz) 3.3 0.72 002.376 0.26 0.61776 0.6668% 054.4

Bluetooth Transceiver 3.3 30.00 099.000 0.6667% 057.0

Boost Power Converter 000.0

Buck Power Converter 011.1

Total 122.6

354 CREATING EMBEDDED SYSTEMS USING RENESAS RL78 FAMILY MICROCONTROLLERS

The resulting energy use from these optimizations appears in Table 11. The MCU en-
ergy use has fallen 54.4 J. Total daily energy consumption is 122.6 J, so standby battery life
soars to about 147 days.

13.6.3.3 Stop Mode

For our last round of optimization we will make two changes to cut energy use for both the
MCU and the Bluetooth. First, we will reduce the Bluetooth activity by updating the bat-
tery voltage only once per day, which is reasonable for a system in a deep standby mode.
This results in a duty cycle of two seconds per 24 hours.

Second, we will put the processor into stop mode rather than halt mode. The halt mode
enables the MCU to wake up immediately, but this is not essential for our application. A
more energy-efficient choice is to use the stop mode, which uses less power but requires
slightly more time to resume (due to the oscillator start-up delay). We will use the
32.768 kHz subsystem clock to drive the system while in stop mode.

The energy used plummets, reaching only 0.275 J per day as shown in Table 12. Bat-
tery life has risen enough (to nearly 180 years) that its self-discharge is the limiting factor.

TABLE 13.12 Energy use with 1 MHz on-chip clock, 32.768 kHz subsystem clock and stop mode.
Battery life is limited by self-discharge rather than load circuit.

OPERATING STOP

COMPONENT
VOLTAGE

(V)
CURRENT

(mA)
POWER
(mW)

CURRENT
(mA)

POWER
(mW)

DUTY
CYCLE

ENERGY
(J)

Sensor 12.0 60.00 720.000 0.0000% 0.000

MCU (1 MHz) 3.3 00.72 002.376 0.00023 0.000546 0.0023% 0.052

Bluetooth Transceiver 3.3 30.00 099.000 0.0023% 0.198

Boost Power Converter 0.000

Buck Power Converter 0.025

Total 0.275

13.7 RECAP

In this chapter we have seen how voltage and switching frequency determine the amount of
power used by a digital circuit. We have also examined the relationship between power and
energy. We have investigated the RL78 MCU family’s design features for reducing power

CHAPTER 13 / POWER AND ENERGY OPTIMIZATION 355

and energy use. Finally we examined how to estimate power and energy consumption for
an embedded application and then used them to guide our energy optimization activities.

13.8 REFERENCES

Renesas Electronics America Inc., White Paper—RL78 Microcontroller Family: Using the Snooze Mode

Feature to Dramatically Reduce Power Consumption (2011).

Renesas Electronics Corporation, RL78/G13 16-Bit Single-Chip Microcontrollers User’s Manual: Hardware

(2011).

13.9 EXERCISES

1. Estimate the battery life of a voice recorder with the following parameters. State
and justify your assumptions.
� 20 kHz audio sample rate
� 3 V 2500 mAH battery
� Input amplifier which draws 1 mA when powered
� Output amplifier which draws 3 mA when powered
� LCD which draws 0.8 mA
� Assume a 3% recording duty cycle and a 2% playback duty cycle.

2. Consider replacing the battery of the previous problem with a 1 F supercapacitor
charged to 5 V. How long will the system operate before the voltage drops be-
low 2 V?

3. Consider the sensor system presented above. Create functioning code using the
halt mode with the techniques described and an 8 MHz clock rate. The authors es-
timated the MCU would need to spend 100 ms out of halt mode. What is the time
for your code? What are the resulting energy use and standby battery life?

4. Experimentally determine the minimum voltage needed to run an RL78G13 MCU
at each of the following frequencies: 32 kHz, 1 MHz, 2 MHz, 4 MHz, 8 MHz,
16 MHz and 32 MHz. Measure the current drawn at each frequency and calculate
the power used and energy per clock cycle. What is the most power-efficient oper-
ating point? What is the most energy-efficient operating point?

5. Processor Vendor X advertises that their microcontroller uses only 80 nJ per clock
cycle at 32 MHz, compared with the (expected) 117 nJ for the RL78G13.Similarly,
VendorY admits their processor uses 160 nJ per clock cycle. Discuss and prioritize
what other factors you will need to consider before determining which MCU will
lead to minimal energy use for your application.

357

Index

A
Absolute maximum ratings, 13
AC flag, 43
ACH, 253
AD conversion result

register, 139
ADC. See analog to digital

converter
ADCEN bit, analog to digital

converter, enabling, 142
ADCR, 139
ADCR register, 151
Address bus, 169
Addressing modes, 45–47
ADINT

analog to digital conversion
speed, 150

direct memory access
controller, 260

ADSCM bit, 147
Agile development methods,

86–87
ALU, 47
Analog signals, 29–35
Analog to digital converter,

137–65
ADCR, 139
concepts, 137–41
conversion modes, 147
conversion results, 151
conversion speed, 149–50
converter speed, 147
digital approximation, 138–39
enabling, 142–44
examples, 151–65
formulas for, 31
frequency sampling, 141
input channels, 144–46
input multiplexer, 144
inputs, 142–44

INTAD interrupt, 150
I/O pins, 142–44
methods, 139
microcontroller interfacing,

30–32
peripheral, 142–51
quantization, 137–39
range check, 150
reference voltage, 146
registers, 148
resolution, 138
scan mode, 144, 146
select mode, 144–45
successive approximation,

139–41
trigger modes, 148
triggering of, 148–49

Application Leading Tool. See
applilet

Application programming
interface

clocked serial interface,
194–201

IIC, 206–11
IICA, 211–14
serial array unit, 193
serial array unit functions,

193–94
universal asynchronous

receiver/transmitter,
201–6

Applilet
microcontroller interfacing,

18–21
serial array unit, 193
software support, 97–98, 99

Arithmetic/logic unit, 47
Arrays

1-dimensional, 115–16
2-dimensional, 116–19

activation records, 120
assembly language, 114–19

Assembler, 90
Assembly language

activation records, 119–22
arrays, 114–19
C code, 103–35
code functions, 119–27
control structures, 127–34
data access, 111–19
data classification, 107
pointers, 113–14
program linking, 108–10
program memory, 104–11
program memory classes, 105
program speed

optimization, 333
real-time systems, 294–95
registers, 122
software compilation, fig, 104
software engineering, 78
startup module, 110–11
subroutines, 123
variables, 112–13

Assumptions and task model,
300–301

Asynchronous communication,
171–73

Atomic code, 292
Automatically allocated data,

105, 106

B
Based addressing, 45, 47
Baud rate, 175
Big bang tests, 83
Big up-front design, 70, 84–85
Bit-oriented instructions, 40
Black box tests, 81
Bluetooth module, 350, 352

358 INDEX

Bottleneck, 330
Bottom up tests, 82
Boundary value tests, 81
Breakpoints, 94
Brownout condition, 257
Build process, 92
Build tests, 82
Bus(es), 168–71, 177
Busy waiting

analog to digital converter,
156, 157

real-time systems, 286

C
C code. See also assembly

language
assemble language

implementation, 103–35
program memory, 104–11
software engineering, 78

C�� code. See also assembly
language

assembly language, 103
software engineering, 78

Call stack
debugger, 95
program memory, 106
real-time systems, 272

CAN, 171, 173
Capacitor, 13
Cause effect graphing tests, 81
CG_ad.h, analog to digital

converter, ex, 155
CG_ad_user.c

analog to digital converter, ex,
155, 163

timer peripherals, ex,
237, 248

CGain.c, analog to digital
converter, ex, 155

CG_int_user.c, 63
CG_main.c

analog to digital converter,
ex, 162

external interrupt ex, 63
timer peripherals, ex, 238, 247

CG_serial module, 99
CG_timer.c, ex, 248
CG_timer_user.c, timer

peripherals, ex, 237, 247
CG_userdefine.h, analog to

digital converter, ex,
155, 162

Circuits, reset, 11
Circuits, reset,

microcontrollers, 15
CKC, 341
Clear box tests, 81–82
Clock frequency, 339, 340
Clock gating, 340
Clock operation mode

control, 341
Clock operation status

control, 341
Clock signal, 142

analog to digital converter, 142
clocked serial interface, 174
serial array unit, 181

Clock signal generators
microcontrollers, 11, 13–15
piezoelectric effect, 14
quartz crystals, 14
RC, fig, 14

Clock source selection, 219
Clocked serial interface

continuous transfer
operation, 183

functions, 194–95,
196–201

global variables, 195–96
serial array unit, 179, 180,

182–87
serial communication, ex,

174–75
single transfer operation, 183
vs. serial three-wire

communications, 175
CMC, 341

Code
assembly language, 108
assembly language functions,

119–27
assembly language

implementation, 103–35
control flow, 127–34
epilogue, 119, 120–21
generation, 17–22
generator tools, 97–98
program counter sampling,

316–21
program optimization,

311–35
program optimization, ex,

321–29
program profiling, 315–21
prologue, 119, 120
real-time systems, 294–95
run-time work reduction,

330–32
Communication. See serial

communication
Comparator

analog signals, 30
analog to digital converter, 148

Comparison logic, 219
Compiler

assembly language, 103
assembly language

registers, 122
code functions, 119
embedded systems vs.

GPPs, 90
interrupt service routine, 54
program speed optimization,

333–34
software development

tools, 90
Connections, for communication,

167–69
Const variable, 80, 107, 108
Contact bounce, 24
Context switching, 276

INDEX 359

Control flow
assembly language, 127–34
iteration, 131–34
selection, 127–31

Control hazard, 49
Control logic, 219
Control signal bus, 168
Control systems, 4
Controller, 225
Conversion clock frequency, 147
Conversion mode, 147
Converter speed, 147
Counter, 217
CPU core, 40–47

arithmetic/logic unit, 47
concepts, 37–39
data addressing, 45–47
data memory, 43–47
instruction addressing, 47
instruction set architecture,

40–41
memory map, fig, 44
pipeline hazards, 48–49
pipeline structure, 48
registers, 42–43

CSC, 341
CSI, 170
C-Spy, 92–97
Current limiting resistor, 21–22
CY flag, 43
Cyclic redundancy check unit

data integrity checks, 173
for peripheral robustness, 255

D
DAC

binary weighted, 33–34
microcontroller interfacing,

32–35
Data. See also data sharing

array access, 114–19
assembly language, 105, 108
assembly language access,

111–19

bus, 168–69
classification, 107
hazard, 48
integrity checks, 173
memory, 43–47
pointers, 113–14
program speed optimization,

332–33
real-time systems, ex, 290
structures, 97
variables, 112–13

Data sharing
assembly language, 294–95
atomic code, 294
function reentrancy, 293–94
interrupts, disabling of, 296
lock variable, 296–97
message queues, 299
objects, 292
real-time systems, 291–300
semaphore, 297–99
solutions/protection, 295–300

DC, 27
Deadline monotonic priority

assignment, 304
Debouncing solution, 24
Debugger

breakpoints, 94
call stack, 95
C-Spy, 92–97
data examination, 95–97
definition, 92
program execution, 93–94

Decomposition, 70
Delay counter, 229–30
Differential communication, 173
Digital circuit power

consumption, 338–39
Digital counter, 217
Digital signal interfacing, 15–29
Digital to analog conversion

binary weighted, 33–34
microcontroller interfacing,

32–35

Direct addressing
assembly language, 112
data memory, 45

Direct current motors, 27
Direct memory access controller,

251
Directed acyclic graph, 272
Divider function, 226
DMA, 251
Do/while loop, 133–34
Driving motors and coils, 27–29
Dual slope integration, 139
Duty cycle, 232
Dynamic deadline

modification, 307
Dynamic power component, 339
Dynamic priority ceiling, 307
Dynamic priority inheritance, 307
Dynamic schedule

real-time systems, 268
real-time systems, ex, 276–86,

286–91
response time, 271
run-to-completion, fig,

280, 281
task priority, 306

Dynamically allocated data,
105, 106

Dynamically-linked
programs, 105

E
Earliest deadline first, 306
EIN GreenEval Zigbee Module,

7–8
Else clause, 268
Embedded systems

attributes, 5
benefits, 2–4
concepts, 1–9
constraints, 6
definition, 1
designing and manufacturing

of, 6

360 INDEX

diagram, 12
EIN GreenEval Zigbee

module, ex, 7–8
functions, 4–5
networks, 2
power optimization, 337–55

Enable logic, 219
Energy monitor, ex, 164
Energy optimization, 337–55. See

also power optimization
bluetooth module, 350, 352
clock speed, 350–51
energy analysis, 349–55
energy characteristics, 346–48
halt mode, 352–54
power analysis, 349
sensor energy, 349
sensor subsystem, 348
standby mode, 352
stop mode, 354
vs. power optimization,

337–38, 340
Event counter mode, 218
Evolutionary prototype, 87
External event counter, 226
External maskable interrupt, 62
External serial clock input,

181–82

F
Fault handling, 5
Finite state machine, 81
Flags. See individual flags
Flash conversion, 139
For loop, 132–33
Format and save data

task, 74
Formulas

ADCR value voltage
range, 139

analog to digital conversion, 31
current limiting resistor, 22
deadline, 307

digital approximation of
analog input, 138–39

duty cycle, 232, 353
earliest deadline first
least upper bound, 301
output voltage, 34
pulse width modulation signal

frequency, 232
task feasibility, 307
total power dissipated, 339
utilization, 301
voltage resolution, 32
worst-case response time, 305

Frequency divider, 226
Frequency sampling

analog to digital converter, 141
timer peripherals, 218

Full duplex mode
clocked serial interface, 174
synchronous

communication, 170

G
General-purpose processors

(GPPs), 90

H
Half duplex mode

inter-integrated circuit, 176
synchronous

communication, 171
universal asynchronous

receiver/transmitter, 175
Hall effect current sensor, 157
Halt mode, 343–44, 352–54
Hardware activities, 53, 56
Hardware trigger mode, 148–49
Harmonic periods, 303–4
Header files, 97
High-water marking, 96

I
I2C. See inter-integrated circuit
IAR C compiler, 103

IAR embedded workbench
assembly language, 108
software development tools, 92

IAR EW C compiler, 122
IC, 2
ID, 48
IE, 43
IE bit, 57
IF, 48
If/Else statement, 127–28
IIC

application programming
interface, 206–11

functions, 206, 207–11
global variables, 206, 208
IICA, 190
serial array unit, 179, 180,

188–93
IICA

application programming
interface, 193, 211–14

functions, 211–14
global variables, 214
global variations, 212
IIC, 190
inter-integrated circuit, 176

Image file, 91
Immediate addressing, 47
Implied addressing, 45
Inductor-capacitor, 13
Input pulse interval measurement,

227–12
Input signal pulse width, 228
Input switches, 24–25
Instruction decode, 48
Instruction decoder, 43
Instruction fetch, 48
Instruction set architecture,

40, 333
INTAD interrupt, 150
Integration tests, 81, 82
Inter-integrated circuit, 171

IICA, 176
serial array unit, 188

INDEX 361

serial communication, ex,
176–78

Interrupt
direct memory access

controller, 260
real-time systems, 273, 296
serial array unit, 182

Interrupt controller, 225
Interrupt mask flag, 58
Interrupt priority specification

flag, 58
Interrupt request flag, 58
Interrupt service priority, 57
Interrupt service routine. See

interrupts
Interrupt vector addresses, 97
Interrupt vector table, 58–59
Interrupts, 49–64

code generator, 97
concurrent requests, 60–62
CPU response to, 57
definition, 49
disabled in ISR, 60
enabled in ISR, 60–6
external, 62–64
IE bit, 57
interrupt service priority, 57
maskable, 57–58
maskable vs. non-maskable, 56
mechanisms, 52
pin input, 62–64
processing activities, 53–56
program status word

register, 57
simultaneous requests, 62
timer array unit, 228
vector table, 58–59
vs. polling

Interval timer
concepts, 218
operation, 219–20

Interval timer control
register, 219

Interval timer mode, 225

INTPn, 62
Intrinsics.h, 97
Inverter, 338
I/O pins

as analog inputs, 142–44
timer array unit, 221

I/O ports, 15
Ior5f1001e_ext.h, 97
Ior5f1001e.h, 16, 97
ISA, 40, 333
ISR. See interrupts
Iteration, 131–34
Iterative process, 85
ITMC, 219

J
Java, 103

L
LC, 13
LCD, 98–101
Least upper bound test, 301
LEDs, 21–22
Light-emitting diode, 21–22
Linker

assembly language, 108
software development tools,

90–91
Liquid crystal display, 98–101
Lock variable, 296–97
Looping constructs, 131–34
LUB, 301

M
Magic numbers, 80
Make program, 92
Map file, 91, 108, 318
Master channel, 230, 231–32
MCU. See microcontroller
MD, 251, 260–62
MD_INTCSIm, 199
MEM, 48
Memory

access, 48

assembly language
subroutines, 123

microcontrollers, 11
peripherals, 256

Message queues, 299
Microcontroller

analog signals, 29–35
Applilet, 18–21
c code support, 16
capacitors, 13
circuit reset, 15
clock signal generation, 13–15
clock speed reduction, 350–51
code generation, 17–22
concepts, 11–12
digital signal interfacing,

15–29
digital to analog conversion,

32–35
driving motors and coils,

27–29
economics, 1–2
infrastructure, 12–15
LEDs as outputs, 21–22
peripherals, 18
power supply, 12–13
pulse width modulation, 35
registers, 16
resistor networks, 33
scanning matrix keypads,

25–27
serial communication,

167–217
signal wire, 22–24
standby modes, 343–46
stepper motors, 28
switches as inputs, 24–25
voltage level shifting, 29

Motors, 27–28
Multiplexer, 144, 169
Multiplier/accumulator/divider

unit, 251, 260–62
Multiply and divide

instructions, 40

362 INDEX

N
NOAA, 313
Nyquist frequency, 141

O
Object code, 90
One-shot pulse, 230–31
Open drain, 24

inter-integrated circuit, 176
serial array unit, 180

Operation speed mode control
register, 219

Oscillation clock, 219
Oscillation stabilization time

counter status register,
342

Oscillation stabilization time
select register, 342

Oscillator
clock sources, 340–41
microcontroller power

supply, 13
OSMC, 218
OSTC, 342
OSTS, 342
Output controller, 225

P
Parallel bus, 168–69
Parallel connection, 167
Parity bit

data integrity checks, 173
peripheral robustness, 255
universal asynchronous

receiver/transmitter, 175
Parity error status flag, 255
PC. See program counter
PCB, 6
PER0, 221, 341
Period, 218
Peripheral enable register 0,

221, 341
Peripheral I/O redirection

register, 16

Peripherals, 251–63
analog to digital converter,

142–51
cyclic redundancy check

unit, 255
direct memory access

controller, 259–60
guard functions, 256–59
invalid memory access

detection, 256
LVD, 258
microcontrollers, 18
multiplier/accumulator/divider,

260–62
for performance, 259–62
RAM parity error

detection, 255
registers, 253, 260, 261
for robustness, 251–59
software support, 97
timer, 217–50
voltage detector, 257–59
watchdog timer, 252–54

Piezoelectric effect, 14
PIM, 16
PIOR, 16
Pipeline instruction processing,

47–49
PM, 15
PMC

analog to digital
converter, 144

microcontrollers, 16
Point-to-point connection, 167
Polling, 49–52
POM, 16
Port input mode register, 16
Port mode control register

analog to digital converter, 144
microcontrollers, 16

Port mode register, 15
Port output mode register, 16
Port register, 16
Power monitor, ex, 157–64

Power optimization, 337–55. See
also energy optimization

clock sources, 340–41
concepts, 337–40
digital circuit power

consumption, 338–39
dynamic power

component, 339
energy analysis, 349–55
methods, 339–40
oscillation stabilization, 342
oscillator frequency selection,

342–43
power characteristics, 346–48
power vs. energy, 337–38
standby mode, 343–46, 352
static power component, 338
total power dissipated, 339

Power supply, 11, 12–13
Precision timing, ex, 233–39
Preemption. See task scheduling
Preemptive systems, 276
Prescaling, 221–24
Primary user interface task, 74
Printed circuit board, 6
Process NMEA data task, 74
Processing, software

engineering, 76
Processor, 11
Processor-control

instructions, 40
Program counter

CPU concepts, 37
CPU core, 41
CPU registers, 42
program profiling, 315
real-time systems, 276
sampling approach, 316–21

Program execution, 93–94
Program memory

assembly language, 104–11
CPU core, 41
data classification, 107
linking, 108–10

INDEX 363

startup module, 110
storage classes, 105

Program profiling
mechanisms, 315–16
optimization, 315–21
program counter sampling,

316–21
Program speed optimization,

311–35
compiler, 333–34
concepts, 311–13
data use, 332–33
example, 313–15, 321–29
guidance for, 329–30
profiling, 315–21
run-time work reduction,

330–32
Program status word register

CPU core, 42
interrupts, 57
real-time systems, 276

Prototype, 87
PU, 16
Pull-up resistor option

register, 16
Pulse width measurement, ex,

239–44
Pulse width modulation

digital to analog
conversion, 35

output signal, 233
timer array unit, 231–33

Pulse width modulation mode, ex,
244–49

PWM. See pulse width
modulation

Q
Quantization

analog to digital converter, 30,
137

error, 139
methods, 139

Quartz crystal, 14

R
R-2R network, 34
RAM guard function, 256–59
RAM parity error detection, 255
Range checking hardware, 150
Rate monotonic priority

assignment, 301–4
R_CSIm_Callback_Error, 200
R_CSIm_Callback_SendEnd,

199, 201
R_CSIm_Create, 196
R_CSIm_receive, 197
R_CSIm_Send, 197, 199
R_CSIm_Send_Receive, 198
R_CSIm_Send_ReceiveEnd, 200
R_CSIm_Start, 196
R_CSIm_stop, 197
RDKRL78_spi, 99
Readiness tests, 81
Real-time operating systems, 286
Real-time systems, 5

assembly language, 294–95
assumptions and task model,

300–301
atomic code, 292, 294
context switching, 276
data shared objects, 292
data sharing, 291–300
data sharing

solutions/protection,
295–300

deadline monotonic priority
assignment, 304

design, 265–310
dynamic schedule, 268
dynamic task priority, 142
function reentrancy, 293–94
harmonic periods, 303–4
interrupts, 273, 296
lock variable, 296–97
message queues, 299
rate monotonic priority

assignment, 301–4
response time, 270–72, 304–5

response time analysis,
300–308

responsiveness of, 265–66
restrictions, loosening of,

305–6
scheduling, 267–73, 300–308
scheduling, ex, 276–86
scheduling,

non-preemptive, 307
semaphore, 297–99
stack memory, 272
static schedule, 268
task, aperiodic, 306, 307
task dispatcher, 278
task interactions, 306–7
task management, 273–76
task of fixed priority, 301–4
task ordering, 268
task preemption, 269–70
task prioritization, 270
task states, 273–75
task states transitions, 275–76
task switching, 299–300
task table, 277, 282
tick interrupt service routine,

278, 282
Register addressing, 45
Register direct addressing, 47
Register indirect addressing, 45
Registers. See also individual

registers
analog to digital converter,

148, 150
assembly language

subroutines, 123
assembly language use, 122
CPU core, 42–43
direct memory access

controller, 260
interval timer, 219
microcontrollers, digital

interfacing, 16
multiplier/accumulator/divider

unit, 261

364 INDEX

power optimization, 341–42
real-time systems, 276
serial array unit, 179
serial communication, 169
shift, 169, 174, 187
special function, 97
timer array unit, 221, 224–25
watchdog timer, 253

Regression tests, 81, 83
Relative addressing, 47
Reset control flag, 253
RESF, 253
Resistor networks

digital to analog conversion, 33
R-2R, 34

Resistors. See individual resistors
Resolution, 30
Resonator, ceramic, clock signal

generators, 14
Response time, 268, 304–5
Responsive systems. See

real-time systems
R_IICA0_Create, 212
R_IICm_Callback_Master_Error,

210
R_IICm_Callback_Master_Recei

veEnd, 211
R_IICm_Callback_Master_Send

End, 211, 212
R_IICm_Create, 206
R_IICm_Interrupt, 210
R_IICm_Master_Receive, 208
R_IICm_Master_Send, 207
R_IICm_StartCondition, 209
R_IICm_Stop, 209
R_IICm_StopCondition, 209
RMPA, 301–4
Round-trip engineering,

18, 98
RS-232, 172
R_SAUn_Create, 194
R_SAUn_Set_PowerOff, 194
R_SAUn_Set_SnoozeOn, 194
R_SAUn_Set_SnozeOff, 194

RTC scheduler, 275
real-time systems, ex, 285–86

RTOS, 286
R_UARTm_Callback_Error, 206
R_UARTm_Callback_ReceiveEn

d, 205
R_UARTm_Callback_SendEnd,

206
R_UARTm_Callback_SoftwareO

verRun, 206
R_UARTm_Create, 201
R_UARTm_Interrupt_Error, 204
R_UARTm_Interrupt_Receive,

204
R_UARTm_Interrupt_Send, 204
R_UARTm_Receive, 203
R_UARTm_Send, 203
R_UARTm_Start, 201
R_UARTm_Stop, 203

S
Sandwich tests, 82
SAR value, 139
Scanning matrix keypads, 25–27
Scratch register, 122
Scrum, 87
Secondary user interface task, 74
Semaphore, 297–99
Sensor subsystem, 348
Sequencing, 4
Serial array unit, 99

Applilet, 193
channel, enabling of, 179–80
clocked serial interface mode,

182–87
concepts, 179–82
data configuration, 180
functions, 193–94
IIC mode, 188–93
interrupts, 182
serial communications, 179–92
serial status register, 181
software control, 181
speed control, 181–82

universal asynchronous
receiver/transmitter
mode, 188

Serial clock input, 181–82
Serial communication, 167–217

asynchronous, 171–73
clocked serial interface,

194–201
concepts, 167–79
connections, 167–69
device driver code, 193–214
differential, 173
full duplex mode, 170
half duplex mode, 171
inter-integrated circuit, 176
registers, 169, 174
serial array unit, 179–92,

193–94
synchronous, 169–71
universal asynchronous

receiver/transmitter,
171–72, 175–78

Serial data bus, 169
Serial status register, 181
Serial three-wire communications

serial communications, 170
software development tools, 99
vs. clocked serial interface, 175

Servos, 28
SFR addressing, 45
SFR guard function, 256–59
Shift registers

clocked serial interface, 174,
187

synchronous communication,
169

Short direct addressing, 45
Signal processing, 5
Signal source, 217
Signal wire, 22–24
Single-pole single throw

switch, 24
Skip instructions, 40
Slave channel, 230, 232

INDEX 365

Snooze mode, 343, 346
Software activities, 54–56
Software development tools,

89–101
assembler, 90
build process, 92
code generator, 97–98
compiler, 90
C-Spy, 92–97
debugger, 92–97
glyph library, 98–101
header files, 97
LCD support, 98–101
linker, 90–91
software gas law, 90, 91
support for RL78, 97–101
tool-chain, 89–92

Software engineering, 67–88. See
also software
development tools

agile development methods,
86–87

architectural design, 76–77
design, 72–73
design requirements, 71–72
development life cycle, 68–71
development life cycle models,

83–87
development plan, 68
development stages, 68–80
graphical representation, 71
implementation, 78–80
iterative process, 85
peer review, 73
programming language, 78
prototyping, 87
risk reduction, 67–68
subsystem design, 77–78, 83
system architecture, 74–76
testing, 80–83
unified modeling language,

71, 74
V model, 68–69
waterfall process, 84–85

Software gas law, 90, 91
Software support, 97–101
Software trigger mode, 148
SPI, 99
Spiral process, 86
Square wave output, 225
SRP, 307
SSR, 181
ST7579 LCD controller IC,

98–99
Stack addressing, 47
Stack memory

assembly language
subroutines, 123

real-time systems, 272
Stack pointer

activation records, 121
assembly language

subroutines, 123
CPU core registers, 42
startup module, 110

Stack resource policy, 307
Standby mode, 343–46, 352
Static analysis, 80
Static power component, 338
Static schedule, 268
Static variable, 107
Statically allocated data, 105
Statically-linked programs, 105
Status flag, 43
Stepper motors, 28
Stop mode, 343, 354
Stop mode345
Structural hazard, 48
Subroutines, 123
Subsystem clock, 219
Successive approximation,

139–41, 150
Switch statement, 128–31
Switches, as inputs, 24–25
Synchronous communication,

169–71
inter-integrated circuit, 176

System clock control, 341

T
Table indirect addressing, 47
Task dispatcher, 278
Task interactions, 306–7
Task scheduling, 267–73

context switching, 276
data, 290
dispatcher, 276
management, 273–76
non-preemptive approach,

270–72
non-preemptive, ex, 276–86
ordering, 268
preemption, 269–70, 272, 291
preemptive approach, 270–72
preemptive, ex, 286–91
prioritization, 270
response time, 268
state transitions, 275–76
states, 273–75
switching, disabled, 299–300
table, 277, 282

Task table, 277, 282
Tasks, aperiodic, 306, 307
TCR0n, 221, 225
TDR0n, 225
Testing, 80–83
Throw away prototype, 87
Tick interrupt service routine,

278, 282
Tick timer, 284
Timer array unit, 221–33

channel operation
mode, 225

channel operations mode,
230–33

circuitry, 225
delay counter, 229–30
divider function, 226
external event counter, 226
input pulse interval

measurement, 227–28
one-shot pulse, 230–31
prescaler, 221–24

366 INDEX

pulse-width modulation,
231–33

registers, 221, 224–25
timer channel, 229

Timer channel, 229
Timer clock select register, 224
Timer counter register 0n,

221, 225
Timer data register, 225
Timer mode, 218
Timer peripherals, 217–50

circuitry, 217–18
concepts, 217–18
examples, 233–49
frequency, 218
interval timer, 218–21
operation speed mode control

register, 219
registers, interval timer, 219
signal period, 218
timer array unit, 221–33

Tool-chain, 18, 89–92, 103
Top down tests, 82
Top-down design, 70
Top-test loop, 131
Total bandwidth server, 307
Transducers, 11
Transistor, 13, 339

U
UART. See universal

asynchronous
receiver/transmitter

UML, 71, 74
Unified modeling language,

71, 74
Unit tests, 81, 82
Universal asynchronous

receiver/transmitter
application programming

interface, 201–6
asynchronous communication,

171–72
concepts, 188
data integrity checks, 173
functions, 201–5
global variables, 200–202
real-time systems

interrupts, 273
serial array unit, 179, 180, 188
serial communication, ex,

175–78
software development

stages, 77
timing diagram, fig, 189–90

User profile tests, 81
Utilization, 298, 307

V
V model, 68–69
Variables, 107
Volatile variable, 107
Voltage

analog to digital converter, 146
detector peripheral, 257–59
microcontroller, 12–13
microcontroller interfacing, 29
power optimization, 339

Voltage monitor, ex, 151–52,
153–56, 157

Voltage resolution, 32
Voltage-mode binary weighted

DACs, 33

W
Watchdog timer, 250–52
Waterfall process, 84–85
While loop, 131–32
White box tests, 81–82
Wired-OR, 24
Worst-practice tests, 83

Y
YRDKRL78_LCD, 99

Z
Z flag, 43

	00.ES_Dean_RL78_FM.qxd
	01.ES_Dean_RL78_CH01.qxd
	02.ES_Dean_RL78_CH02.qxd
	03.ES_Dean_RL78_CH03.qxd
	04.ES_Dean_RL78_CH04.qxd
	05.ES_Dean_RL78_CH05.qxd
	06.ES_Dean_RL78_CH06.qxd
	07.ES_Dean_RL78_CH07.qxd
	08.ES_Dean_RL78_CH08.qxd
	09.ES_Dean_RL78_CH09.qxd
	10.ES_Dean_RL78_CH10.qxd
	11.ES_Dean_RL78_CH11.qxd
	12.ES_Dean_RL78_CH12.qxd
	13.ES_Dean_RL78_CH13.qxd
	14.ES_Dean_RL78_Index.qxd

